Wastewaters and by-products generated in the winemaking process are important and inexpensive sources of value-added compounds that can be potentially reused for the development of new products of commercial interest (i.e., functional foods). This research was undertaken in order to evaluate the potential of nanofiltration (NF) membranes in the recovery of anthocyanins and monosaccharides from a clarified Carménère grape marc obtained through a combination of ultrasound-assisted extraction and microfiltration. Three different flat-sheet nanofiltration (NF) membranes, covering the range of molecular weight cut-off (MWCO) from 150 to 800 Da, wereevaluated for their productivity as well as for their rejection towards anthocyanins (malvidin-3-Oglucoside, malvidin 3-(acetyl)-glucoside, and malvidin 3-(coumaroyl)-glucoside) and sugars (glucose and fructose) in selected operating conditions. The selected membranes showed differences in their performance in terms of permeate flux and rejection of target compounds. The NFX membrane, with the lowest MWCO (150-300 Da), showed a lower flux decay in comparison to the other investigated membranes. All the membranes showed rejection higher than 99.42% for the quantified anthocyanins.Regarding sugars rejection, the NFX membrane showed the highest rejection for glucose and fructose (100 and 92.60%, respectively), whereas the NFW membrane (MWCO 300-500 Da) was the one with the lowest rejection for these compounds (80.57 and 71.62%, respectively). As a general trend, the tested membranes did not show a preferential rejection of anthocyanins over sugars. Therefore, all tested membranes were suitable for concentration purposes.

Recovery of anthocyanins and monosaccharides from grape marc extract by nanofiltration membranes

A Cassano;
2021

Abstract

Wastewaters and by-products generated in the winemaking process are important and inexpensive sources of value-added compounds that can be potentially reused for the development of new products of commercial interest (i.e., functional foods). This research was undertaken in order to evaluate the potential of nanofiltration (NF) membranes in the recovery of anthocyanins and monosaccharides from a clarified Carménère grape marc obtained through a combination of ultrasound-assisted extraction and microfiltration. Three different flat-sheet nanofiltration (NF) membranes, covering the range of molecular weight cut-off (MWCO) from 150 to 800 Da, wereevaluated for their productivity as well as for their rejection towards anthocyanins (malvidin-3-Oglucoside, malvidin 3-(acetyl)-glucoside, and malvidin 3-(coumaroyl)-glucoside) and sugars (glucose and fructose) in selected operating conditions. The selected membranes showed differences in their performance in terms of permeate flux and rejection of target compounds. The NFX membrane, with the lowest MWCO (150-300 Da), showed a lower flux decay in comparison to the other investigated membranes. All the membranes showed rejection higher than 99.42% for the quantified anthocyanins.Regarding sugars rejection, the NFX membrane showed the highest rejection for glucose and fructose (100 and 92.60%, respectively), whereas the NFW membrane (MWCO 300-500 Da) was the one with the lowest rejection for these compounds (80.57 and 71.62%, respectively). As a general trend, the tested membranes did not show a preferential rejection of anthocyanins over sugars. Therefore, all tested membranes were suitable for concentration purposes.
2021
Istituto per la Tecnologia delle Membrane - ITM
wine by-products
grape marc
nanofiltration
anthocyanins
Carménère
File in questo prodotto:
File Dimensione Formato  
prod_451129-doc_164113.pdf

accesso aperto

Descrizione: Recovery of anthocyanins and monosaccharides from grape marc extract by nanofiltration membranes
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 901.99 kB
Formato Adobe PDF
901.99 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/403932
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 24
  • ???jsp.display-item.citation.isi??? ND
social impact