Timely and accurate information on crop mapping and monitoring is necessary for agricultural resources management. Accordingly, the applicability of the proposed classification-feature selection ensemble procedure with different feature sets for crop mapping is investigated. Here, we produced various feature sets including spectral bands, spectral indices, variation of spectral index, texture, and combinations of features to map different types of crops. By using various feature sets and the random forest (RF) classifier, the crop maps were created. In aiming to determine the most relevant and distinctive features, the particle swarm optimization (PSO) and RF-variable importance measure feature selection methods were examined. The classification-feature selection ensemble procedure was adapted to combine the outputs of different feature sets from the better feature selection method using majority votes. Multi-temporal Sentinel-2 data has been used in Ghale-Nou county of Tehran, Iran. The performance of RF was efficient in crop mapping especially by spectral bands and texture in combination with other feature sets. Our results showed that the PSO-based feature selection leads to a more accurate classification than the RF-variable importance measure, in almost all feature sets for all crop types. The RF classifier-PSO ensemble procedure for crop mapping outperformed the RF classifier in each feature set with regard to the class-wise and overall accuracies (OA) (of about 2.7-7.4% increases in OA and 0.48-3.68% (silage maize), 0-1.61% (rice), 2.82-15.43% (alfalfa), and 10.96-41.13% (vegetables) improvement in F-scores for all feature sets). The proposed method could mainly be useful to differentiate between heterogeneous crop fields (e.g., vegetables in this study) due to their more obtained omission/commission errors reduction.

Crop Mapping Using Random Forest and Particle Swarm Optimization based on Multi-Temporal Sentinel-2

Pignatti Stefano
2020

Abstract

Timely and accurate information on crop mapping and monitoring is necessary for agricultural resources management. Accordingly, the applicability of the proposed classification-feature selection ensemble procedure with different feature sets for crop mapping is investigated. Here, we produced various feature sets including spectral bands, spectral indices, variation of spectral index, texture, and combinations of features to map different types of crops. By using various feature sets and the random forest (RF) classifier, the crop maps were created. In aiming to determine the most relevant and distinctive features, the particle swarm optimization (PSO) and RF-variable importance measure feature selection methods were examined. The classification-feature selection ensemble procedure was adapted to combine the outputs of different feature sets from the better feature selection method using majority votes. Multi-temporal Sentinel-2 data has been used in Ghale-Nou county of Tehran, Iran. The performance of RF was efficient in crop mapping especially by spectral bands and texture in combination with other feature sets. Our results showed that the PSO-based feature selection leads to a more accurate classification than the RF-variable importance measure, in almost all feature sets for all crop types. The RF classifier-PSO ensemble procedure for crop mapping outperformed the RF classifier in each feature set with regard to the class-wise and overall accuracies (OA) (of about 2.7-7.4% increases in OA and 0.48-3.68% (silage maize), 0-1.61% (rice), 2.82-15.43% (alfalfa), and 10.96-41.13% (vegetables) improvement in F-scores for all feature sets). The proposed method could mainly be useful to differentiate between heterogeneous crop fields (e.g., vegetables in this study) due to their more obtained omission/commission errors reduction.
2020
Istituto di Metodologie per l'Analisi Ambientale - IMAA
crop mapping
feature selection
particle swarm optimization
random forest
multi-temporal Sentinel-2 image
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/404312
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 51
  • ???jsp.display-item.citation.isi??? 45
social impact