A stochastic scheme, namely, PLM-Lap, has recently been propounded, which relies on the profile likelihood (PL) constructed with a Laplace distribution for estimating muscle activation onsets (MAOs) in surface electromyographic (sEMG) data. The MAO detection accuracy and robustness of the PLM-Lap have been empirically shown to be better than those of several state-of-the-art approaches. The algorithm designates the data point index associated with the maximum of the PL function as an onset occurrence by regarding every sEMG data point as a candidate onset and hence exhaustively evaluating the objective function. This article concerns an expedient and faster approach premised on the discrete Fibonacci search (DFS) to locate the maximum of the discrete PL function. The experimental results support that both the exhaustive and DFS procedures are equivalent in a statistical sense, whereas the latter offers impressive computational savings by a factor of approximately 90. Owing to the speed-up, the accuracy of MAO estimation may further be enhanced by modeling the sEMG data with a set of PL functions, each one built using a suitable probability distribution, and picking the estimate from the best model. Three statistical criteria, i.e., Kolmogorov-Smirnov, Lilliefors, and Anderson-Darling test, for choosing the probability distribution are recommended. A freely downloadable MATLAB package, namely PROLIFIC, meant for sEMG onset detection is available on MATLAB File Exchange from the following link: https://www.mathworks.com/matlabcentral/fileexchange/76495-prolific-profile-likelihoodbased-on-fibonacci-search.

PROLIFIC: A Fast and Robust Profile-Likelihood-Based Muscle Onset Detection in Electromyogram Using Discrete Fibonacci Search

Amato Umberto;
2020

Abstract

A stochastic scheme, namely, PLM-Lap, has recently been propounded, which relies on the profile likelihood (PL) constructed with a Laplace distribution for estimating muscle activation onsets (MAOs) in surface electromyographic (sEMG) data. The MAO detection accuracy and robustness of the PLM-Lap have been empirically shown to be better than those of several state-of-the-art approaches. The algorithm designates the data point index associated with the maximum of the PL function as an onset occurrence by regarding every sEMG data point as a candidate onset and hence exhaustively evaluating the objective function. This article concerns an expedient and faster approach premised on the discrete Fibonacci search (DFS) to locate the maximum of the discrete PL function. The experimental results support that both the exhaustive and DFS procedures are equivalent in a statistical sense, whereas the latter offers impressive computational savings by a factor of approximately 90. Owing to the speed-up, the accuracy of MAO estimation may further be enhanced by modeling the sEMG data with a set of PL functions, each one built using a suitable probability distribution, and picking the estimate from the best model. Three statistical criteria, i.e., Kolmogorov-Smirnov, Lilliefors, and Anderson-Darling test, for choosing the probability distribution are recommended. A freely downloadable MATLAB package, namely PROLIFIC, meant for sEMG onset detection is available on MATLAB File Exchange from the following link: https://www.mathworks.com/matlabcentral/fileexchange/76495-prolific-profile-likelihoodbased-on-fibonacci-search.
2020
Anderson-Darling test
discrete Fibonacci search
Kolmogorov-Smirnov test
Lilliefors test
muscle activation onset
profile likelihood
surface electromyography
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/404372
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact