Motivated by a real failure dataset in a two-dimensional context, this paper presents an extension of the Markov modulated Poisson process (MMPP) to two dimensions. The one-dimensional MMPP has been proposed for the modeling of dependent and non-exponential inter-failure times (in contexts as queuing, risk or reliability, among others). The novel two-dimensional MMPP allows for dependence between the two sequences of interfailure times, while at the same time preserves the MMPP properties, marginally. The generalization is based on the Marshall-Olkin exponential distribution. Inference is undertaken for the new model through a method combining a matching moments approach with an Approximate Bayesian Computation (ABC) algorithm. The performance of the method is shown on simulated and real datasets representing times and distances covered between consecutive failures in a public transport company. For the real dataset, some quantities of importance associated with the reliability of the system are estimated as the probabilities and expected number of failures at different times and distances covered by trains until the occurrence of a failure.

A bivariate two-state Markov modulated Poisson process for failure modeling

F Ruggeri
2021

Abstract

Motivated by a real failure dataset in a two-dimensional context, this paper presents an extension of the Markov modulated Poisson process (MMPP) to two dimensions. The one-dimensional MMPP has been proposed for the modeling of dependent and non-exponential inter-failure times (in contexts as queuing, risk or reliability, among others). The novel two-dimensional MMPP allows for dependence between the two sequences of interfailure times, while at the same time preserves the MMPP properties, marginally. The generalization is based on the Marshall-Olkin exponential distribution. Inference is undertaken for the new model through a method combining a matching moments approach with an Approximate Bayesian Computation (ABC) algorithm. The performance of the method is shown on simulated and real datasets representing times and distances covered between consecutive failures in a public transport company. For the real dataset, some quantities of importance associated with the reliability of the system are estimated as the probabilities and expected number of failures at different times and distances covered by trains until the occurrence of a failure.
2021
Istituto di Matematica Applicata e Tecnologie Informatiche - IMATI -
Markov modulated Poisson process (MMPP)
Bivariate process
Identifiability
Moments matching method
ABC
Train reliability data
File in questo prodotto:
File Dimensione Formato  
prod_451504-doc_198358.pdf

solo utenti autorizzati

Descrizione: A bivariate two-state Markov modulated Poisson process for failure modeling
Tipologia: Versione Editoriale (PDF)
Dimensione 2.47 MB
Formato Adobe PDF
2.47 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/404427
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 13
social impact