The investigated SDBDPA was manufactured by microfabrication techniques. Photolithography ensured thin metal deposition with high manufacturing reliability control. Due to the possible device degradation during operation, emphasis was put in selecting thin film materials that could withstand the plasma environment. Schott alkali-free borosilicate glass substrate was chosen as dielectric, while a multilayer tungsten (W)/titanium nitride (TiN) as electrode material.
Small engines will be finding increasing applications in unmanned aerial vehicles (UAVs), drones and helicopters. However, their turbomachines exhibit lower efficiencies than those of large scale engines. In this context, the aerodynamic losses in the low-pressure turbines (LPTs) are largely accountable to flow separation at low Reynolds numbers operation, i.e. in cruise conditions. Active flow control is a promising technology to suppress separation, thus reducing losses, fuel consumption rates and therefore emissions. The present paper is focused on the experimental investigation of the potentialities of a Single Dielectric Barrier Discharge Plasma Actuator (SDBDPA) to reattach the separated flow at a Reynolds number of 2.10(4). The influence of the high voltage (HV) waveform supplying the SDBDPA on both flow separation control and device power dissipation was studied.
Separation control by a microfabricated SDBD plasma actuator for small engine turbine applications: influence of the excitation waveform
Francioso L;
2018
Abstract
Small engines will be finding increasing applications in unmanned aerial vehicles (UAVs), drones and helicopters. However, their turbomachines exhibit lower efficiencies than those of large scale engines. In this context, the aerodynamic losses in the low-pressure turbines (LPTs) are largely accountable to flow separation at low Reynolds numbers operation, i.e. in cruise conditions. Active flow control is a promising technology to suppress separation, thus reducing losses, fuel consumption rates and therefore emissions. The present paper is focused on the experimental investigation of the potentialities of a Single Dielectric Barrier Discharge Plasma Actuator (SDBDPA) to reattach the separated flow at a Reynolds number of 2.10(4). The influence of the high voltage (HV) waveform supplying the SDBDPA on both flow separation control and device power dissipation was studied.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


