This work analyzes the morphological evolution of assemblies of living neurons, as they self-organize from collections of separated cells into elaborated, clustered, networks. In particular, we introduce and implement a graph-based unsupervised segmentation algorithm that automatically retrieves the whole network structure from large scale phase-contrast images taken at high resolution throughout the entire life of a cultured neuronal network. The network structure is represented by an adjacency matrix in which nodes are identified as neurons or clusters of neurons, and links are the reconstructed connections (neurites) between them. The algorithm is also able to extract all other relevant morphological information characterizing neurons and neurites. More importantly and at variance with other segmentation methods that require fluorescence imaging from immunocytochemistry techniques, our measures are non invasive and entitle us to carry out a fully longitudinal analysis during the maturation of a single culture. In turn, a systematic statistical analysis of a group of topological observables grants us the possibility of quantifying and tracking the progression of the main networks characteristics during the self-organization process of the culture. Our results point to the existence of a particular state corresponding to a small-world network configuration, in which several relevant graphs' micro- and meso-scale properties emerge. Finally, we identify the main physical processes taking place during the cultures morphological transformations, and embed them into a simplified growth model that quantitatively reproduces the overall set of experimental observations.

Self-organized cultured neuronal networks: Longitudinal analysis and modeling of the underlying network structure

Boccaletti S.;
2019

Abstract

This work analyzes the morphological evolution of assemblies of living neurons, as they self-organize from collections of separated cells into elaborated, clustered, networks. In particular, we introduce and implement a graph-based unsupervised segmentation algorithm that automatically retrieves the whole network structure from large scale phase-contrast images taken at high resolution throughout the entire life of a cultured neuronal network. The network structure is represented by an adjacency matrix in which nodes are identified as neurons or clusters of neurons, and links are the reconstructed connections (neurites) between them. The algorithm is also able to extract all other relevant morphological information characterizing neurons and neurites. More importantly and at variance with other segmentation methods that require fluorescence imaging from immunocytochemistry techniques, our measures are non invasive and entitle us to carry out a fully longitudinal analysis during the maturation of a single culture. In turn, a systematic statistical analysis of a group of topological observables grants us the possibility of quantifying and tracking the progression of the main networks characteristics during the self-organization process of the culture. Our results point to the existence of a particular state corresponding to a small-world network configuration, in which several relevant graphs' micro- and meso-scale properties emerge. Finally, we identify the main physical processes taking place during the cultures morphological transformations, and embed them into a simplified growth model that quantitatively reproduces the overall set of experimental observations.
2019
Istituto dei Sistemi Complessi - ISC
978-3-030-16584-0
--
File in questo prodotto:
File Dimensione Formato  
475640_1_En_Print.indd.pdf

solo utenti autorizzati

Descrizione: Self-organized cultured neuronal networks: Longitudinal analysis and modeling of the underlying network structure
Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.56 MB
Formato Adobe PDF
1.56 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/404599
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact