The Verwey transition in magnetite (Fe3O4) is the first metal-insulator transition ever observed(1) and involves a concomitant structural rearrangement and charge-orbital ordering. Owing to the complex interplay of these intertwined degrees of freedom, a complete characterization of the low-temperature phase of magnetite and the mechanism driving the transition have long remained elusive. It was demonstrated in recent years that the fundamental building blocks of the charge-ordered structure are three-site small polarons called trimerons(2). However, electronic collective modes of this trimeron order have not been detected to date, and thus an understanding of the dynamics of the Verwey transition from an electronic point of view is still lacking. Here, we discover spectroscopic signatures of the low-energy electronic excitations of the trimeron network using terahertz light. By driving these modes coherently with an ultrashort laser pulse, we reveal their critical softening and hence demonstrate their direct involvement in the Verwey transition. These findings shed new light on the cooperative mechanism at the origin of magnetite's exotic ground state.

Spectroscopic study of the low-energy excitations in magnetite Fe3O4 shows the signatures of its charge-ordered structure involved in the metal-insulator transition, whose building blocks are the three-site small polarons, termed trimerons.

Discovery of the soft electronic modes of the trimeron order in magnetite

Lorenzana, Jose;
2020

Abstract

Spectroscopic study of the low-energy excitations in magnetite Fe3O4 shows the signatures of its charge-ordered structure involved in the metal-insulator transition, whose building blocks are the three-site small polarons, termed trimerons.
2020
Istituto dei Sistemi Complessi - ISC
The Verwey transition in magnetite (Fe3O4) is the first metal-insulator transition ever observed(1) and involves a concomitant structural rearrangement and charge-orbital ordering. Owing to the complex interplay of these intertwined degrees of freedom, a complete characterization of the low-temperature phase of magnetite and the mechanism driving the transition have long remained elusive. It was demonstrated in recent years that the fundamental building blocks of the charge-ordered structure are three-site small polarons called trimerons(2). However, electronic collective modes of this trimeron order have not been detected to date, and thus an understanding of the dynamics of the Verwey transition from an electronic point of view is still lacking. Here, we discover spectroscopic signatures of the low-energy electronic excitations of the trimeron network using terahertz light. By driving these modes coherently with an ultrashort laser pulse, we reveal their critical softening and hence demonstrate their direct involvement in the Verwey transition. These findings shed new light on the cooperative mechanism at the origin of magnetite's exotic ground state.
strong correlation
File in questo prodotto:
File Dimensione Formato  
prod_423355-doc_176925.pdf

solo utenti autorizzati

Descrizione: Discovery of the soft electronic modes of the trimeron order in magnetite
Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 4.57 MB
Formato Adobe PDF
4.57 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/404629
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 39
  • ???jsp.display-item.citation.isi??? 35
social impact