Aligning senses across resources and languages is a challenging task with beneficial applications in the field of natural language processing and electronic lexicography. In this paper, we describe our efforts in manually aligning monolingual dictionaries. The alignment is carried out at sense-level for various resources in 15 languages. Moreover, senses are annotated with possible semantic relationships such as broadness, narrowness, relatedness, and equivalence. In comparison to previous datasets for this task, this dataset covers a wide range of languages and resources and focuses on the more challenging task of linking general-purpose language. We believe that our data will pave the way for further advances in alignment and evaluation of word senses by creating new solutions, particularly those notoriously requiring data such as neural networks. Our resources are publicly available at https://github.com/elexis-eu/MWSA.

A multilingual evaluation dataset for monolingual word sense alignment

Monachini Monica;Bellandi Andrea;
2020

Abstract

Aligning senses across resources and languages is a challenging task with beneficial applications in the field of natural language processing and electronic lexicography. In this paper, we describe our efforts in manually aligning monolingual dictionaries. The alignment is carried out at sense-level for various resources in 15 languages. Moreover, senses are annotated with possible semantic relationships such as broadness, narrowness, relatedness, and equivalence. In comparison to previous datasets for this task, this dataset covers a wide range of languages and resources and focuses on the more challenging task of linking general-purpose language. We believe that our data will pave the way for further advances in alignment and evaluation of word senses by creating new solutions, particularly those notoriously requiring data such as neural networks. Our resources are publicly available at https://github.com/elexis-eu/MWSA.
2020
Istituto di linguistica computazionale "Antonio Zampolli" - ILC
979-10-95546-34-4
lexical semantic resources
sense alignment
lexicography
language resource
File in questo prodotto:
File Dimensione Formato  
prod_429354-doc_156902.pdf

accesso aperto

Descrizione: LREC2020_WSalignment
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 685 kB
Formato Adobe PDF
685 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/404924
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact