Embryonic cryopreservation has a relatively low survival rate because of cytoskeletal damage. However, molecular anti-freezing mechanisms have been largely unexplored. This study investigated the significance of RhoA, involved in embryonic development, and the Rho/RhoA-associated kinase (ROCK) signalling pathway in cryopreservation. The anti-freezing mechanism in murine dormant embryos, compared with normal blastocysts, was assessed by combining molecular, physiological and pharmacological approaches. Real-time PCR and western blotting experiments showed high RhoA expression in cryo-dormant and dormant embryos. RhoA GTPases were overexpressed on the surface of trophectoderm cells in dormant embryos. Treatment with Y-27632, a ROCK antagonist, decreased survival of both normal and dormant blastocysts, while recombinant RhoA protein remarkably increased survival, after freeze-thawing, of normal hatched blastocysts. Our findings elucidated the molecular mechanism of anti-freezing, involving RhoA phosphorylation, meditated by the Rho/ROCK signalling pathway, in hatched and diapaused murine blastocysts. In addition, evidence for a potentially protective additive suggests a new method for improving the anti-freezing potential of mammalian embryos, without protecting the zona pellucida.

RhoA phosphorylation mediated by Rho/RhoA-associated kinase pathway improves the anti-freezing potentiality of murine hatched and diapaused blastocysts

Pauciullo Alfredo;
2017

Abstract

Embryonic cryopreservation has a relatively low survival rate because of cytoskeletal damage. However, molecular anti-freezing mechanisms have been largely unexplored. This study investigated the significance of RhoA, involved in embryonic development, and the Rho/RhoA-associated kinase (ROCK) signalling pathway in cryopreservation. The anti-freezing mechanism in murine dormant embryos, compared with normal blastocysts, was assessed by combining molecular, physiological and pharmacological approaches. Real-time PCR and western blotting experiments showed high RhoA expression in cryo-dormant and dormant embryos. RhoA GTPases were overexpressed on the surface of trophectoderm cells in dormant embryos. Treatment with Y-27632, a ROCK antagonist, decreased survival of both normal and dormant blastocysts, while recombinant RhoA protein remarkably increased survival, after freeze-thawing, of normal hatched blastocysts. Our findings elucidated the molecular mechanism of anti-freezing, involving RhoA phosphorylation, meditated by the Rho/ROCK signalling pathway, in hatched and diapaused murine blastocysts. In addition, evidence for a potentially protective additive suggests a new method for improving the anti-freezing potential of mammalian embryos, without protecting the zona pellucida.
2017
Istituto per il Sistema Produzione Animale in Ambiente Mediterraneo - ISPAAM
RhoA
File in questo prodotto:
File Dimensione Formato  
prod_451598-doc_164879.pdf

accesso aperto

Descrizione: Prodotto a stampa
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 1.28 MB
Formato Adobe PDF
1.28 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/404943
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact