Community discovery is one of the most challenging tasks in social network analysis. During the last decades, several algorithms have been proposed with the aim of identifying communities in complex networks, each one searching for mesoscale topologies having different and peculiar characteristics. Among such vast literature, an interesting family of Community Discovery algorithms, designed for the analysis of social network data, is represented by overlapping, node-centric approaches. In this work, following such line of research, we propose Angel, an algorithm that aims to lower the computational complexity of previous solutions while ensuring the identification of high-quality overlapping partitions. We compare Angel, both on synthetic and real-world datasets, against state of the art community discovery algorithms designed for the same community definition. Our experiments underline the effectiveness and efficiency of the proposed methodology, confirmed by its ability to constantly outperform the identified competitors.

ANGEL: efficient, and effective, node-centric community discovery in static and dynamic networks

Rossetti G
2020

Abstract

Community discovery is one of the most challenging tasks in social network analysis. During the last decades, several algorithms have been proposed with the aim of identifying communities in complex networks, each one searching for mesoscale topologies having different and peculiar characteristics. Among such vast literature, an interesting family of Community Discovery algorithms, designed for the analysis of social network data, is represented by overlapping, node-centric approaches. In this work, following such line of research, we propose Angel, an algorithm that aims to lower the computational complexity of previous solutions while ensuring the identification of high-quality overlapping partitions. We compare Angel, both on synthetic and real-world datasets, against state of the art community discovery algorithms designed for the same community definition. Our experiments underline the effectiveness and efficiency of the proposed methodology, confirmed by its ability to constantly outperform the identified competitors.
2020
Istituto di Scienza e Tecnologie dell'Informazione "Alessandro Faedo" - ISTI
Community discovery
Complex networks
Dynamic networks
File in questo prodotto:
File Dimensione Formato  
prod_424491-doc_151381.pdf

accesso aperto

Descrizione: ANGEL: efficient, and effective, node-centric community discovery in static and dynamic networks
Tipologia: Versione Editoriale (PDF)
Dimensione 1.18 MB
Formato Adobe PDF
1.18 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/405142
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? ND
social impact