Using high resolution resonant inelastic x-ray scattering measurements, we have observed that the orbital excitations of the quasi-1D spin chain compound CuGeO3 has nontrivial and noticeable orbital mixing effects from 3d valence spin-orbit coupling. In particular, the SOC leads to a significant correction of dz2 state, which has a direct interplay with the low energy physics of cuprates. Guided by atomic multiplet based modeling, our results strongly support a 3d spin-orbit mixing scenario and explore in detail the nature of these excitations.
Direct observation of spin-orbit-induced 3d hybridization via resonant inelastic extreme ultraviolet scattering on an edge-sharing cuprate
Malvestuto M;Ciprian R;Dell'Angela M;Parmigiani F
2019
Abstract
Using high resolution resonant inelastic x-ray scattering measurements, we have observed that the orbital excitations of the quasi-1D spin chain compound CuGeO3 has nontrivial and noticeable orbital mixing effects from 3d valence spin-orbit coupling. In particular, the SOC leads to a significant correction of dz2 state, which has a direct interplay with the low energy physics of cuprates. Guided by atomic multiplet based modeling, our results strongly support a 3d spin-orbit mixing scenario and explore in detail the nature of these excitations.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.