We study the interaction between epidemic spreading and a vaccination process. We assume that, similar to the disease spreading, the vaccination process also occurs through direct contact, i.e., it follows the standard susceptible-infected-susceptible (SIS) dynamics. The two competing processes are asymmetrically coupled as vaccinated nodes can directly become infected at a reduced rate with respect to susceptible ones. We study analytically the model in the framework of mean-field theory finding a rich phase diagram. When vaccination provides little protection toward infection, two continuous transitions separate a disease-free immunized state from vaccinated-free epidemic state, with an intermediate mixed state where susceptible, infected, and vaccinated individuals coexist. As vaccine efficiency increases, a tricritical point leads to a bistable regime, and discontinuous phase transitions emerge. Numerical simulations for homogeneous random networks agree very well with analytical predictions.

Competition between vaccination and disease spreading

Castellano C.
2020

Abstract

We study the interaction between epidemic spreading and a vaccination process. We assume that, similar to the disease spreading, the vaccination process also occurs through direct contact, i.e., it follows the standard susceptible-infected-susceptible (SIS) dynamics. The two competing processes are asymmetrically coupled as vaccinated nodes can directly become infected at a reduced rate with respect to susceptible ones. We study analytically the model in the framework of mean-field theory finding a rich phase diagram. When vaccination provides little protection toward infection, two continuous transitions separate a disease-free immunized state from vaccinated-free epidemic state, with an intermediate mixed state where susceptible, infected, and vaccinated individuals coexist. As vaccine efficiency increases, a tricritical point leads to a bistable regime, and discontinuous phase transitions emerge. Numerical simulations for homogeneous random networks agree very well with analytical predictions.
2020
Istituto dei Sistemi Complessi - ISC
NETWORKS
epidemics
vaccination
SIS model
File in questo prodotto:
File Dimensione Formato  
prod_429414-doc_162214.pdf

solo utenti autorizzati

Descrizione: Competition between vaccination and disease spreading
Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.49 MB
Formato Adobe PDF
1.49 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
2001.11293.pdf

accesso aperto

Descrizione: Competition between vaccination and disease spreading
Tipologia: Documento in Post-print
Licenza: Altro tipo di licenza
Dimensione 1.15 MB
Formato Adobe PDF
1.15 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/405408
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? ND
social impact