The colour purity and versatility of fabrication of one-dimensional photonic crystals (1D PhCs) make them ideal candidates for colorimetric sensing of a variety of analytes. For instance, the detection of bacterial contaminants in food via colorimetric sensors can be highly appealing, as most of the existing detection techniques are in general time-consuming and whose read-out requires specialised personnel. Here, we present a colorimetric sensor based on hybrid plasmonic/photonic 1D crystals. We demonstrate that the modification of the silver plasmon resonance brought about by the effective silver/bacterium interaction can be translated into the visible spectral region, producing a change in the structural colour. In addition, we observe a superior colorimetric sensitivity against the gram negative Escherichia coli than the gram positive Micrococcus luteus, a result that we attribute to the more efficient electrostatic interaction and cellular adhesion between the silver surface and the gram-negative bacteria outer membrane. This approach demonstrates that in principle an easy colorimetric detection of bacterial contaminants can be achieved through the use of bio-responsive plasmonic materials, such as silver, whose selective electrostatic interaction with bacterial cell wall is well-known and occurs without the need of chemical functionalisation.

INTEGRATION OF BIO-RESPONSIVE SILVER IN 1D PHOTONIC CRYSTALS: TOWARDS THE COLORIMETRIC DETECTION OF BACTERIA

Silvia Maria Pietralunga;Francesco Scotognella
2020

Abstract

The colour purity and versatility of fabrication of one-dimensional photonic crystals (1D PhCs) make them ideal candidates for colorimetric sensing of a variety of analytes. For instance, the detection of bacterial contaminants in food via colorimetric sensors can be highly appealing, as most of the existing detection techniques are in general time-consuming and whose read-out requires specialised personnel. Here, we present a colorimetric sensor based on hybrid plasmonic/photonic 1D crystals. We demonstrate that the modification of the silver plasmon resonance brought about by the effective silver/bacterium interaction can be translated into the visible spectral region, producing a change in the structural colour. In addition, we observe a superior colorimetric sensitivity against the gram negative Escherichia coli than the gram positive Micrococcus luteus, a result that we attribute to the more efficient electrostatic interaction and cellular adhesion between the silver surface and the gram-negative bacteria outer membrane. This approach demonstrates that in principle an easy colorimetric detection of bacterial contaminants can be achieved through the use of bio-responsive plasmonic materials, such as silver, whose selective electrostatic interaction with bacterial cell wall is well-known and occurs without the need of chemical functionalisation.
2020
Istituto di fotonica e nanotecnologie - IFN
colorimetric sensors
plasmonics
1D photonics crystals
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/405685
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact