Resonant soft X-ray reflectivity at the carbon K-edge was applied to a trigonal tetracene single crystal. The angular resolved reflectivity was quantitatively simulated describing the tetracene crystal in terms of its dielectric tensor, which was derived from the anisotropic absorption cross section of the single molecule, as calculated by density functional theory. A good agreement was found between the experimental and theoretically predicted reflectivity. This allows us to assess the anisotropic optical constants of the organic material, probed at the carbon K-edge, in relation to the bulk/surface structural and electronic properties of the crystal, through empty energy levels.

Quantitative resonant soft x-ray reflectivity from an organic semiconductor single crystal

Capelli R;Verna A;Pasquali L
2019

Abstract

Resonant soft X-ray reflectivity at the carbon K-edge was applied to a trigonal tetracene single crystal. The angular resolved reflectivity was quantitatively simulated describing the tetracene crystal in terms of its dielectric tensor, which was derived from the anisotropic absorption cross section of the single molecule, as calculated by density functional theory. A good agreement was found between the experimental and theoretically predicted reflectivity. This allows us to assess the anisotropic optical constants of the organic material, probed at the carbon K-edge, in relation to the bulk/surface structural and electronic properties of the crystal, through empty energy levels.
2019
Istituto Officina dei Materiali - IOM -
-
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/405697
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? ND
social impact