Some feasible direction methods for the minimization of a linearly constrained convex function are studied. Special emphasis is placed on the analysis of the procedures which find the search direction, by developing active set methods which use orthogonal or Gauss-Jordan-like transformations. Numerical experiments are performed on a class of quadratic problems depending on two parameters, related to the conditioning of the matrix associated with the quadratic form and the matrix of active constraints at the optimal point. Results are given for the rate of convergence and the average iteration time.
Numerical study of some feasible direction methods in mathematical programming
1983
Abstract
Some feasible direction methods for the minimization of a linearly constrained convex function are studied. Special emphasis is placed on the analysis of the procedures which find the search direction, by developing active set methods which use orthogonal or Gauss-Jordan-like transformations. Numerical experiments are performed on a class of quadratic problems depending on two parameters, related to the conditioning of the matrix associated with the quadratic form and the matrix of active constraints at the optimal point. Results are given for the rate of convergence and the average iteration time.File in questo prodotto:
| File | Dimensione | Formato | |
|---|---|---|---|
|
prod_420981-doc_149343.pdf
solo utenti autorizzati
Descrizione: Numerical study of some feasible direction methods in mathematical programming
Tipologia:
Versione Editoriale (PDF)
Dimensione
821.68 kB
Formato
Adobe PDF
|
821.68 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


