An integrable model subjected to a periodic driving gives rise generally to a nonintegrable Floquet Hamiltonian. Here we show that the Floquet Hamiltonian of the integrable Lieb-Liniger model in the presence of a linear potential with a periodic time-dependent strength is instead integrable and its quasienergies can be determined using the Bethe ansatz approach. We discuss various aspects of the dynamics of the system at stroboscopic times and we also propose a possible experimental realization of the periodically driven tilting in terms of a shaken rotated ring potential.

Integrable Floquet Hamiltonian for a Periodically Tilted 1D Gas

Mussardo G;Trombettoni A
2019

Abstract

An integrable model subjected to a periodic driving gives rise generally to a nonintegrable Floquet Hamiltonian. Here we show that the Floquet Hamiltonian of the integrable Lieb-Liniger model in the presence of a linear potential with a periodic time-dependent strength is instead integrable and its quasienergies can be determined using the Bethe ansatz approach. We discuss various aspects of the dynamics of the system at stroboscopic times and we also propose a possible experimental realization of the periodically driven tilting in terms of a shaken rotated ring potential.
2019
Istituto Officina dei Materiali - IOM -
-
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/405890
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? ND
social impact