The classification of micro-arrays data relative toovarian cancer is approached without using any a prioriinformation via a specially designed technique, consisting ofcascading two clustering algorithms, namely PDDP, recalled,and well known K-means. Then validation is made byinvestigating correlations between the obtained clustering andthe a priori clinical classification, possibly suggesting new anduseful information on the investigated disease

Towards classification of ovarian cancer via micro-arrays data analysis

diego liberati
2020

Abstract

The classification of micro-arrays data relative toovarian cancer is approached without using any a prioriinformation via a specially designed technique, consisting ofcascading two clustering algorithms, namely PDDP, recalled,and well known K-means. Then validation is made byinvestigating correlations between the obtained clustering andthe a priori clinical classification, possibly suggesting new anduseful information on the investigated disease
2020
Istituto di Elettronica e di Ingegneria dell'Informazione e delle Telecomunicazioni - IEIIT
bioinformatica
componenti principali
k-means
shrinking
cascading methods
File in questo prodotto:
File Dimensione Formato  
prod_421511-doc_149650.pdf

solo utenti autorizzati

Descrizione: GNB 2020
Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 671.03 kB
Formato Adobe PDF
671.03 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/405927
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact