The classification of micro-arrays data relative toovarian cancer is approached without using any a prioriinformation via a specially designed technique, consisting ofcascading two clustering algorithms, namely PDDP, recalled,and well known K-means. Then validation is made byinvestigating correlations between the obtained clustering andthe a priori clinical classification, possibly suggesting new anduseful information on the investigated disease
Towards classification of ovarian cancer via micro-arrays data analysis
diego liberati
2020
Abstract
The classification of micro-arrays data relative toovarian cancer is approached without using any a prioriinformation via a specially designed technique, consisting ofcascading two clustering algorithms, namely PDDP, recalled,and well known K-means. Then validation is made byinvestigating correlations between the obtained clustering andthe a priori clinical classification, possibly suggesting new anduseful information on the investigated diseaseFile in questo prodotto:
| File | Dimensione | Formato | |
|---|---|---|---|
|
prod_421511-doc_149650.pdf
solo utenti autorizzati
Descrizione: GNB 2020
Tipologia:
Versione Editoriale (PDF)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
671.03 kB
Formato
Adobe PDF
|
671.03 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


