Structured light is attracting significant attention for its diverse applications in both classical and quantum optics. The so-called vector vortex beams display peculiar properties in both contexts due to the nontrivial correlations between optical polarization and orbital angular momentum. Here we demonstrate a new, flexible experimental approach to the classification of vortex vector beams. We first describe a platform for generating arbitrary complex vector vortex beams inspired to photonic quantum walks. We then exploit recent machine learning methods - namely, convolutional neural networks and principal component analysis - to recognize and classify specific polarization patterns. Our study demonstrates the significant advantages resulting from the use of machine learning-based protocols for the construction and characterization of high-dimensional resources for quantum protocols.

Machine Learning-Based Classification of Vector Vortex Beams

2020

Abstract

Structured light is attracting significant attention for its diverse applications in both classical and quantum optics. The so-called vector vortex beams display peculiar properties in both contexts due to the nontrivial correlations between optical polarization and orbital angular momentum. Here we demonstrate a new, flexible experimental approach to the classification of vortex vector beams. We first describe a platform for generating arbitrary complex vector vortex beams inspired to photonic quantum walks. We then exploit recent machine learning methods - namely, convolutional neural networks and principal component analysis - to recognize and classify specific polarization patterns. Our study demonstrates the significant advantages resulting from the use of machine learning-based protocols for the construction and characterization of high-dimensional resources for quantum protocols.
2020
Istituto dei Sistemi Complessi - ISC
Convolutional neural networks
Polarization
Principal component analysis
Quantum optics
Vectors
Vortex flow
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/406144
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 129
  • ???jsp.display-item.citation.isi??? 116
social impact