Studies on marine community dynamics and population structures are limited by the lack of exhaustive knowledge on the larval dispersal component of connectivity. Genetic data represents a powerful tool in understanding such processes in the marine realm. When dealing with dispersion and connectivity in marine ecosystems, many evidences show patterns of genetic structure that cannot be explained by any clear geographic trend and may show temporal instability. This scenario is usually referred to as chaotic genetic patchiness, whose driving mechanisms are recognized to be selection, temporal shifts in local population dynamics, sweepstakes reproductive success and collective dispersal. In this study we focused on the marbled crab Pachygrapsus marmoratus that inhabits the rocky shores of the Mediterranean Sea, Black Sea and East Atlantic Ocean, and disperses through planktonic larvae for about 1 month. P. marmoratus exhibits unexpectedly low connectivity levels at local scale, although well-defined phylogeographic patterns across the species' distribution range were described. This has been explained as an effect of subtle geographic barriers or due to sweepstake reproductive success. In order to verify a chaotic genetic patchiness scenario, and to explore mechanisms underlying it, we planned our investigation within the Ligurian Sea, an isolated basin of the western Mediterranean Sea, and we genotyped 321 individuals at 11 microsatellite loci.

Investigation of mechanisms underlying chaotic genetic patchiness in the intertidal marbled crab Pachygrapsus marmoratus (Brachyura: Grapsidae) across the Ligurian Sea

Baratti M;
2020

Abstract

Studies on marine community dynamics and population structures are limited by the lack of exhaustive knowledge on the larval dispersal component of connectivity. Genetic data represents a powerful tool in understanding such processes in the marine realm. When dealing with dispersion and connectivity in marine ecosystems, many evidences show patterns of genetic structure that cannot be explained by any clear geographic trend and may show temporal instability. This scenario is usually referred to as chaotic genetic patchiness, whose driving mechanisms are recognized to be selection, temporal shifts in local population dynamics, sweepstakes reproductive success and collective dispersal. In this study we focused on the marbled crab Pachygrapsus marmoratus that inhabits the rocky shores of the Mediterranean Sea, Black Sea and East Atlantic Ocean, and disperses through planktonic larvae for about 1 month. P. marmoratus exhibits unexpectedly low connectivity levels at local scale, although well-defined phylogeographic patterns across the species' distribution range were described. This has been explained as an effect of subtle geographic barriers or due to sweepstake reproductive success. In order to verify a chaotic genetic patchiness scenario, and to explore mechanisms underlying it, we planned our investigation within the Ligurian Sea, an isolated basin of the western Mediterranean Sea, and we genotyped 321 individuals at 11 microsatellite loci.
2020
Istituto di Bioscienze e Biorisorse
BMC
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/406324
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact