We collect observational evidence that supports the scheme of mass transfer on the nucleus of comet 67P/Churyumov-Gerasimenko. The obliquity of the rotation axis of 67P causes strong seasonal variations. During perihelion the southern hemisphere is four times more active than the north. Northern territories are widely covered by granular material that indicates back fall originating from the active south. Decimetre sized chunks contain water ice and their trajectories are influenced by an antisolar force instigated by sublimation. OSIRIS observations suggest that up to 20 per cent of the particles directly return to the nucleus surface taking several hours of traveltime. The back fall covered northern areas are active if illuminated but produce mainly water vapour. The decimetre chunks from the nucleus surface are too small to contain more volatile compounds such as CO or CO. This causes a north-south dichotomy of the composition measurements in the coma. Active particles are trapped in the gravitational minimum of Hapi during northern winter. They are 'shock frozen' and only re-activated when the comet approaches the sun after its aphelion passage. The insolation of the big cavity is enhanced by self-heating, i.e. reflection and IR radiation from the walls. This, together with the pristinity of the active back fall, explains the early observed activity of the Hapi region. Sobek may be a role model for the consolidated bottom of Hapi. Mass transfer in the case of 67P strongly influences the evolution of the nucleus and the interpretation of coma measurements.
Seasonal mass transfer on the nucleus of comet 67P/Chuyumov-Gerasimenko
Da Deppo V;
2017
Abstract
We collect observational evidence that supports the scheme of mass transfer on the nucleus of comet 67P/Churyumov-Gerasimenko. The obliquity of the rotation axis of 67P causes strong seasonal variations. During perihelion the southern hemisphere is four times more active than the north. Northern territories are widely covered by granular material that indicates back fall originating from the active south. Decimetre sized chunks contain water ice and their trajectories are influenced by an antisolar force instigated by sublimation. OSIRIS observations suggest that up to 20 per cent of the particles directly return to the nucleus surface taking several hours of traveltime. The back fall covered northern areas are active if illuminated but produce mainly water vapour. The decimetre chunks from the nucleus surface are too small to contain more volatile compounds such as CO or CO. This causes a north-south dichotomy of the composition measurements in the coma. Active particles are trapped in the gravitational minimum of Hapi during northern winter. They are 'shock frozen' and only re-activated when the comet approaches the sun after its aphelion passage. The insolation of the big cavity is enhanced by self-heating, i.e. reflection and IR radiation from the walls. This, together with the pristinity of the active back fall, explains the early observed activity of the Hapi region. Sobek may be a role model for the consolidated bottom of Hapi. Mass transfer in the case of 67P strongly influences the evolution of the nucleus and the interpretation of coma measurements.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.