Goal of the thesis is the generation of synthetic human mobility based on Deep Learning. Three different generative recurrent models have been implemented: a Seq2Seq Variational Autoencoder (VAE), a Generative Adversarial Network (GAN) and a Wasserstein GAN. The aim of this study is the generation of a synthetic dataset of GPS trajectories having characteristics and typical measures proper of the real human mobility. Scopo della tesi è la generazione di mobilità umana sintetica basata suDeep Learning. Sono stati implementati tre modelli generativi: un Seq2Seq Variational Autoencoder (VAE), una Generative Adversarial Network (GAN) e una Wasserstein GAN. Obiettivo finale dello studio è lagenerazione di un dataset sintetico di traiettorie GPS, avente caratteristiche e misure proprie della mobilità umana.
Generative Models of Human Mobility based on Deep Learning / Briganti, S.; Pappalardo, L.; Nanni, M.. - (2020 Feb 06).
Generative Models of Human Mobility based on Deep Learning
Pappalardo L.Correlatore interno
;Nanni M.Correlatore interno
2020
Abstract
Goal of the thesis is the generation of synthetic human mobility based on Deep Learning. Three different generative recurrent models have been implemented: a Seq2Seq Variational Autoencoder (VAE), a Generative Adversarial Network (GAN) and a Wasserstein GAN. The aim of this study is the generation of a synthetic dataset of GPS trajectories having characteristics and typical measures proper of the real human mobility. Scopo della tesi è la generazione di mobilità umana sintetica basata suDeep Learning. Sono stati implementati tre modelli generativi: un Seq2Seq Variational Autoencoder (VAE), una Generative Adversarial Network (GAN) e una Wasserstein GAN. Obiettivo finale dello studio è lagenerazione di un dataset sintetico di traiettorie GPS, avente caratteristiche e misure proprie della mobilità umana.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


