Goal of the thesis is the generation of synthetic human mobility based on Deep Learning. Three different generative recurrent models have been implemented: a Seq2Seq Variational Autoencoder (VAE), a Generative Adversarial Network (GAN) and a Wasserstein GAN. The aim of this study is the generation of a synthetic dataset of GPS trajectories having characteristics and typical measures proper of the real human mobility. Scopo della tesi è la generazione di mobilità umana sintetica basata suDeep Learning. Sono stati implementati tre modelli generativi: un Seq2Seq Variational Autoencoder (VAE), una Generative Adversarial Network (GAN) e una Wasserstein GAN. Obiettivo finale dello studio è lagenerazione di un dataset sintetico di traiettorie GPS, avente caratteristiche e misure proprie della mobilità umana.

Generative Models of Human Mobility based on Deep Learning / Briganti, S.; Pappalardo, L.; Nanni, M.. - (2020 Feb 06).

Generative Models of Human Mobility based on Deep Learning

Pappalardo L.
Correlatore interno
;
Nanni M.
Correlatore interno
2020

Abstract

Goal of the thesis is the generation of synthetic human mobility based on Deep Learning. Three different generative recurrent models have been implemented: a Seq2Seq Variational Autoencoder (VAE), a Generative Adversarial Network (GAN) and a Wasserstein GAN. The aim of this study is the generation of a synthetic dataset of GPS trajectories having characteristics and typical measures proper of the real human mobility. Scopo della tesi è la generazione di mobilità umana sintetica basata suDeep Learning. Sono stati implementati tre modelli generativi: un Seq2Seq Variational Autoencoder (VAE), una Generative Adversarial Network (GAN) e una Wasserstein GAN. Obiettivo finale dello studio è lagenerazione di un dataset sintetico di traiettorie GPS, avente caratteristiche e misure proprie della mobilità umana.
6-feb-2020
Istituto di Scienza e Tecnologie dell'Informazione "Alessandro Faedo" - ISTI
data science
human mobility
mobility data
mobility analysis
generative models
artificial intelligence
machine learning
PAPPALARDO, LUCA
NANNI, MIRCO
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/406596
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact