Second-order nonlinear metasurfaces have proven their ability to efficiently convert the frequency of incident signals over subwavelength thickness. However, the availability of second-order nonlinear materials for such metasurfaces has so far been limited to III-V semiconductors, which have low transparency in the visible and impose constraints on the excitation geometries due to the lack of diagonal second-order susceptibility components. Here we propose a new design concept for second-order nonlinear metasurfaces on a monolithic substrate, which is not limited by the availability of thin crystalline films and can be applied to any non-centrosymmetric material. We exemplify this concept in a monolithic Lithium Niobate metasurface with cylinder-shaped corrugations for enhanced field confinement. By optimizing the geometrical parameters, we show enhanced second harmonic generation from a near-infrared pump beam with conversion efficiency above 10(-5) using 1 GW/cm(2) pump intensity. Our approach enables new opportunities for practical designs of generic metasurfaces for nonlinear and quantum light sources. (C) 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Second harmonic generation in monolithic lithium niobate metasurfaces

De Angelis Costantino;
2019

Abstract

Second-order nonlinear metasurfaces have proven their ability to efficiently convert the frequency of incident signals over subwavelength thickness. However, the availability of second-order nonlinear materials for such metasurfaces has so far been limited to III-V semiconductors, which have low transparency in the visible and impose constraints on the excitation geometries due to the lack of diagonal second-order susceptibility components. Here we propose a new design concept for second-order nonlinear metasurfaces on a monolithic substrate, which is not limited by the availability of thin crystalline films and can be applied to any non-centrosymmetric material. We exemplify this concept in a monolithic Lithium Niobate metasurface with cylinder-shaped corrugations for enhanced field confinement. By optimizing the geometrical parameters, we show enhanced second harmonic generation from a near-infrared pump beam with conversion efficiency above 10(-5) using 1 GW/cm(2) pump intensity. Our approach enables new opportunities for practical designs of generic metasurfaces for nonlinear and quantum light sources. (C) 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
2019
Istituto Nazionale di Ottica - INO
diffraction
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/406691
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 55
  • ???jsp.display-item.citation.isi??? ND
social impact