Wavelet methods are known to be very competitive in terms of denoising and compression, due to the simultaneous localization property of a function in time and frequency. However, boundary assumptions, such as periodicity or symmetry, generate bias and artificial wiggles which degrade overall accuracy.

We present and compare some nonparametric estimation methods (wavelet and/or spline-based) designed to recover a one-dimensional piecewise-smooth regression function in both a fixed equidistant or not equidistant design regression model and a random design model.

Flexible, boundary adapted, nonparametric methods for the estimation of univariate piecewise-smooth functions

Amato Umberto;De Feis Italia
2020

Abstract

We present and compare some nonparametric estimation methods (wavelet and/or spline-based) designed to recover a one-dimensional piecewise-smooth regression function in both a fixed equidistant or not equidistant design regression model and a random design model.
2020
Istituto Applicazioni del Calcolo ''Mauro Picone''
Wavelet methods are known to be very competitive in terms of denoising and compression, due to the simultaneous localization property of a function in time and frequency. However, boundary assumptions, such as periodicity or symmetry, generate bias and artificial wiggles which degrade overall accuracy.
Wavelets
boundary corrections
nonparametric regression
smoothing splines
thresholding
model selection
backfitting
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/406892
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact