Background: A novel form of thyroid hormone (TH) signaling is represented by 3-iodothyronamine (T1AM), an endogenous TH derivative that interacts with specific molecular targets, including trace amine-associated receptor 1 (TAAR1), and induces pro-learning and anti-amnestic effects in mice. Dysregulation of TH signaling has long been hypothesized to play a role in Alzheimer's disease (AD). In the present investigation, we explored the neuroprotective role of T1AM in beta amyloid (A?)-induced synaptic and behavioral impairment, focusing on the entorhinal cortex (EC), an area that is affected early by AD pathology. Methods: Field potentials were evoked in EC layer II, and long-term potentiation (LTP) was elicited by high frequency stimulation (HFS). T1AM (5 ?M) and/or A?(1-42) (200 nM), were administered for 10 minutes, starting 5 minutes before HFS. Selective TAAR1 agonist RO5166017 (250 nM) and TAAR1 antagonist EPPTB (5 nM) were also used. The electrophysiological experiments were repeated in EC-slices taken from a mouse model of AD (mutant human amyloid precursor protein [mhAPP], J20 line). We also assessed the in vivo effects of T1AM on EC-dependent associative memory deficits, which were detected in mhAPP mice by behavioral evaluations based on the novel-object recognition paradigm. TAAR1 expression was determined by Western blot, whereas T1AM and its metabolite 3-iodothyroacetic acid (TA1) were assayed by high-performance liquid chromatography coupled to mass spectrometry. Results: We demonstrate the presence of endogenous T1AM and TAAR1 in the EC of wild-type and mhAPP mice. Exposure to A?(1-42) inhibited LTP, and T1AM perfusion (at a concentration of 5 ?M, leading to an actual concentration in the perfusion buffer ranging from 44 to 298 nM) restored it, whereas equimolar amounts of 3,5,3?-triiodo-L-thyronine (T3) and TA1 were ineffective. The response to T1AM was abolished by the TAAR1 antagonist EPPTB, whereas it was mimicked by the TAAR1 agonist RO5166017. In the EC of APPJ20 mice, LTP could not be elicited, but it was rescued by T1AM. The intra-cerebro-ventricular administration of T1AM (0.89 ?g/kg) also restored recognition memory that was impaired in mhAPP mice. Conclusions: Our results suggest that T1AM and TAAR1 are part of an endogenous system that can be modulated to prevent synaptic and behavioral deficits associated with A?-related toxicity

Exogenous 3-Iodothyronamine Rescues the Entorhinal Cortex from beta-Amyloid Toxicity

Novelli E;Origlia N
2020

Abstract

Background: A novel form of thyroid hormone (TH) signaling is represented by 3-iodothyronamine (T1AM), an endogenous TH derivative that interacts with specific molecular targets, including trace amine-associated receptor 1 (TAAR1), and induces pro-learning and anti-amnestic effects in mice. Dysregulation of TH signaling has long been hypothesized to play a role in Alzheimer's disease (AD). In the present investigation, we explored the neuroprotective role of T1AM in beta amyloid (A?)-induced synaptic and behavioral impairment, focusing on the entorhinal cortex (EC), an area that is affected early by AD pathology. Methods: Field potentials were evoked in EC layer II, and long-term potentiation (LTP) was elicited by high frequency stimulation (HFS). T1AM (5 ?M) and/or A?(1-42) (200 nM), were administered for 10 minutes, starting 5 minutes before HFS. Selective TAAR1 agonist RO5166017 (250 nM) and TAAR1 antagonist EPPTB (5 nM) were also used. The electrophysiological experiments were repeated in EC-slices taken from a mouse model of AD (mutant human amyloid precursor protein [mhAPP], J20 line). We also assessed the in vivo effects of T1AM on EC-dependent associative memory deficits, which were detected in mhAPP mice by behavioral evaluations based on the novel-object recognition paradigm. TAAR1 expression was determined by Western blot, whereas T1AM and its metabolite 3-iodothyroacetic acid (TA1) were assayed by high-performance liquid chromatography coupled to mass spectrometry. Results: We demonstrate the presence of endogenous T1AM and TAAR1 in the EC of wild-type and mhAPP mice. Exposure to A?(1-42) inhibited LTP, and T1AM perfusion (at a concentration of 5 ?M, leading to an actual concentration in the perfusion buffer ranging from 44 to 298 nM) restored it, whereas equimolar amounts of 3,5,3?-triiodo-L-thyronine (T3) and TA1 were ineffective. The response to T1AM was abolished by the TAAR1 antagonist EPPTB, whereas it was mimicked by the TAAR1 agonist RO5166017. In the EC of APPJ20 mice, LTP could not be elicited, but it was rescued by T1AM. The intra-cerebro-ventricular administration of T1AM (0.89 ?g/kg) also restored recognition memory that was impaired in mhAPP mice. Conclusions: Our results suggest that T1AM and TAAR1 are part of an endogenous system that can be modulated to prevent synaptic and behavioral deficits associated with A?-related toxicity
2020
Istituto di Neuroscienze - IN -
3-iodothyronamine
Alzheimer's disease
brain
trace amine-associated receptor 1
?-amyloid
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/407117
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? ND
social impact