In this paper we contrast two fundamentally different ways to approach the analysis of transition system behaviours. Both methods refer to the (finite) global state transition graph; but while method A, familiar to software system designers and process algebraists, deals with execution paths of virtually unbounded length, typically starting from a precise initial state, method B, associated with counterfactual reasoning, looks at single-step evolutions starting from all conceivable system states. Among various possible state transition models we pick boolean nets - a generalisation of cellular automata in which all nodes fire synchronously. Our nets shall be composed of parts P and Q that interact by shared variables. At first we adopt approach B and a simple information-theoretic measure - mutual information M(yP,yQ) - for detecting the degree of coupling between the two components after one transition step from the uniform distribution of all global states. Then we consider an asymptotic version M(y*P,y*Q) of mutual information, somehow mixing methods A and B, and illustrate a technique for obtaining accurate approximations of M(y*P,y*Q) based on the attractors of the global graph.

Single-step and asymptotic mutual information in bipartite boolean nets

Bolognesi T
2019

Abstract

In this paper we contrast two fundamentally different ways to approach the analysis of transition system behaviours. Both methods refer to the (finite) global state transition graph; but while method A, familiar to software system designers and process algebraists, deals with execution paths of virtually unbounded length, typically starting from a precise initial state, method B, associated with counterfactual reasoning, looks at single-step evolutions starting from all conceivable system states. Among various possible state transition models we pick boolean nets - a generalisation of cellular automata in which all nodes fire synchronously. Our nets shall be composed of parts P and Q that interact by shared variables. At first we adopt approach B and a simple information-theoretic measure - mutual information M(yP,yQ) - for detecting the degree of coupling between the two components after one transition step from the uniform distribution of all global states. Then we consider an asymptotic version M(y*P,y*Q) of mutual information, somehow mixing methods A and B, and illustrate a technique for obtaining accurate approximations of M(y*P,y*Q) based on the attractors of the global graph.
2019
Istituto di Scienza e Tecnologie dell'Informazione "Alessandro Faedo" - ISTI
Boolean network
Mutual information
Counterfactual analysis
Integrated Information Theory
Transition system behaviour
Attractor
File in questo prodotto:
File Dimensione Formato  
prod_424164-doc_151178.pdf

non disponibili

Descrizione: Single-step and asymptotic mutual information in bipartite boolean nets
Tipologia: Versione Editoriale (PDF)
Dimensione 1.1 MB
Formato Adobe PDF
1.1 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/407238
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact