In this paper, a reaction-diffusion prey-predator system including the fear effect of predator on prey population and group defense has been considered. The conditions for the onset of cross-diffusion-driven instability are obtained by linear stability analysis. The technique of multiple time scales is employed to deduce the amplitude equation near Turing bifurcation threshold by choosing the cross-diffusion coefficient as a bifurcation parameter. The stability analysis of these amplitude equations leads to the identification of various Turing patterns driven by the cross-diffusion, which are also investigated through numerical simulations.

Cross-Diffusion-Driven Instability in a Predator-Prey System with Fear and Group Defense

M F Carfora;I Torcicollo
2020

Abstract

In this paper, a reaction-diffusion prey-predator system including the fear effect of predator on prey population and group defense has been considered. The conditions for the onset of cross-diffusion-driven instability are obtained by linear stability analysis. The technique of multiple time scales is employed to deduce the amplitude equation near Turing bifurcation threshold by choosing the cross-diffusion coefficient as a bifurcation parameter. The stability analysis of these amplitude equations leads to the identification of various Turing patterns driven by the cross-diffusion, which are also investigated through numerical simulations.
2020
Istituto Applicazioni del Calcolo ''Mauro Picone''
Turing instability
amplitude equation
Turing patterns
Holling type IV functional response
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/407299
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact