We report that the immunogenicity of colloidal gold nanoparticles coated with polyvinylpyrrolidone (PVP-AuNPs) in a model organism, the sea urchin Paracentrotus lividus, can function as a proxy for humans for in vitro immunological studies. To profile the immune recognition and interaction from exposure to PVP-AuNP (1 and 10 ?g mL-1), we applied an extensive nano-scale approach, including particle physicochemical characterisation involving immunology, cellular biology, and metabolomics. The interaction between PVP-AuNPs and soluble proteins of the sea urchin physiological coelomic fluid (blood equivalent) results in the formation of a protein "corona" surrounding the NP from three major proteins that influence the hydrodynamic size and colloidal stability of the particle. At the lower concentration of PVP-AuNPs, the P. lividus phagocytes show a broad metabolic plasticity based on the biosynthesis of metabolites mediating inflammation and phagocytosis. At the higher concentration of PVP-AuNPs, phagocytes activate an immunological response involving Toll-like receptor 4 (TLR4) signalling pathway at 24 h of exposure. These results emphasise that exposure to PVP-AuNP drives inflammatory signalling by the phagocytes and the resolution at both the low and high concentrations of the PVP-AuNPs and provides more details regarding the immunogenicity of these NPs.
Gold nanoparticles coated with polyvinylpyrrolidone and sea urchin extracellular molecules induce transient immune activation
Andi Alijagic;Daniela Gaglio;Annalisa Pinsino
2021
Abstract
We report that the immunogenicity of colloidal gold nanoparticles coated with polyvinylpyrrolidone (PVP-AuNPs) in a model organism, the sea urchin Paracentrotus lividus, can function as a proxy for humans for in vitro immunological studies. To profile the immune recognition and interaction from exposure to PVP-AuNP (1 and 10 ?g mL-1), we applied an extensive nano-scale approach, including particle physicochemical characterisation involving immunology, cellular biology, and metabolomics. The interaction between PVP-AuNPs and soluble proteins of the sea urchin physiological coelomic fluid (blood equivalent) results in the formation of a protein "corona" surrounding the NP from three major proteins that influence the hydrodynamic size and colloidal stability of the particle. At the lower concentration of PVP-AuNPs, the P. lividus phagocytes show a broad metabolic plasticity based on the biosynthesis of metabolites mediating inflammation and phagocytosis. At the higher concentration of PVP-AuNPs, phagocytes activate an immunological response involving Toll-like receptor 4 (TLR4) signalling pathway at 24 h of exposure. These results emphasise that exposure to PVP-AuNP drives inflammatory signalling by the phagocytes and the resolution at both the low and high concentrations of the PVP-AuNPs and provides more details regarding the immunogenicity of these NPs.File | Dimensione | Formato | |
---|---|---|---|
Alijagic et al 2021 JHM.pdf
solo utenti autorizzati
Tipologia:
Versione Editoriale (PDF)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
5.52 MB
Formato
Adobe PDF
|
5.52 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.