In this paper we deal with a feedback control design for the action potential of a neuronal membrane in relation with the non-linear dynamics of the Hodgkin-Huxley mathematical model. More exactly, by using an external current as a control expressed by a relay graph in the equation of the potential, we aim at forcing it to reach a certain manifold in finite time and to slide on it after that. From the mathematical point of view we solve a system involving a parabolic differential inclusion and three nonlinear differential equations via an approximating technique and a fixed point result. The existence of the sliding mode and the determination of the time at which the potential reaches the prescribed manifold are proved by a maximum principle argument. Numerical simulations are presented.

Sliding mode control of the Hodgkin-Huxley mathematical model

C Cavaterra;
2019

Abstract

In this paper we deal with a feedback control design for the action potential of a neuronal membrane in relation with the non-linear dynamics of the Hodgkin-Huxley mathematical model. More exactly, by using an external current as a control expressed by a relay graph in the equation of the potential, we aim at forcing it to reach a certain manifold in finite time and to slide on it after that. From the mathematical point of view we solve a system involving a parabolic differential inclusion and three nonlinear differential equations via an approximating technique and a fixed point result. The existence of the sliding mode and the determination of the time at which the potential reaches the prescribed manifold are proved by a maximum principle argument. Numerical simulations are presented.
2019
Istituto di Matematica Applicata e Tecnologie Informatiche - IMATI -
Hodgkin-Huxley model; sliding mode control; feedback stabilization; nonlinear parabolic equations; reaction-diffusion systems
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/407578
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact