In this study, mesoscale environments associated with 57 significant tornadoes occurring over Italy in the period 2000-2018 are analyzed. The role of the vertical Wind Shear in the lower and middle troposphere, in terms of low-level shear (LLS) and deep-level shear (DLS), and of the convective available potential energy (CAPE) as possible precursors of significant tornadoes is statistically investigated. Wind shear and CAPE data are extracted from the ERA-5 and ERA-Interim reanalyses. Overall, the study indicates that: (a) values of these variables in the two uppermost quartiles of their statistical distribution significantly increases the probability of tornado occurrences; (b) the probability increases for increasing values of LLS and DLS, and (c) is maximum when either wind shear or CAPE are large. These conclusions hold for both the reanalysis datasets and do not depend upon the season and/or the considered area. With the possible exception of weak tornadoes, which are not included in our study, our results show that large wind shear, in the presence of medium-to-high values of CAPE, are reliable precursors of tornadoes.

A Statistical Investigation of Mesoscale Precursors of Significant Tornadoes: The Italian Case Study

Miglietta, Mario;
2020

Abstract

In this study, mesoscale environments associated with 57 significant tornadoes occurring over Italy in the period 2000-2018 are analyzed. The role of the vertical Wind Shear in the lower and middle troposphere, in terms of low-level shear (LLS) and deep-level shear (DLS), and of the convective available potential energy (CAPE) as possible precursors of significant tornadoes is statistically investigated. Wind shear and CAPE data are extracted from the ERA-5 and ERA-Interim reanalyses. Overall, the study indicates that: (a) values of these variables in the two uppermost quartiles of their statistical distribution significantly increases the probability of tornado occurrences; (b) the probability increases for increasing values of LLS and DLS, and (c) is maximum when either wind shear or CAPE are large. These conclusions hold for both the reanalysis datasets and do not depend upon the season and/or the considered area. With the possible exception of weak tornadoes, which are not included in our study, our results show that large wind shear, in the presence of medium-to-high values of CAPE, are reliable precursors of tornadoes.
2020
Istituto di Scienze dell'Atmosfera e del Clima - ISAC
tornado
precursors
wind shear
convective available potential energy
statistical analysis
File in questo prodotto:
File Dimensione Formato  
atmosphere-11-00301 (1).pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 776.96 kB
Formato Adobe PDF
776.96 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/407595
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact