We introduce a new discretization scheme for Maxwell equations in two space dimension. Inspired by the new paradigm of Isogeometric analysis introduced in Hughes et al. (2005) [16], we propose an algorithm based on the use of bivariate B-splines spaces suitably adapted to electromagnetics. We construct B-splines spaces of variable interelement regularity on the parametric domain. These spaces (and their push-forwards on the physical domain) form a De Rham diagram and we use them to solve the Maxwell source and eigen problem. Our scheme has the following features: (i) is adapted to treat complex geometries, (ii) is spectral correct, (iii) provides regular (e.g., globally C0) discrete solutions of Maxwell equations.
Isogeometric analysis in electromagnetics: B-splines approximation
A Buffa;G Sangalli;
2010
Abstract
We introduce a new discretization scheme for Maxwell equations in two space dimension. Inspired by the new paradigm of Isogeometric analysis introduced in Hughes et al. (2005) [16], we propose an algorithm based on the use of bivariate B-splines spaces suitably adapted to electromagnetics. We construct B-splines spaces of variable interelement regularity on the parametric domain. These spaces (and their push-forwards on the physical domain) form a De Rham diagram and we use them to solve the Maxwell source and eigen problem. Our scheme has the following features: (i) is adapted to treat complex geometries, (ii) is spectral correct, (iii) provides regular (e.g., globally C0) discrete solutions of Maxwell equations.File | Dimensione | Formato | |
---|---|---|---|
prod_31509-doc_15437.pdf
solo utenti autorizzati
Descrizione: Articolo pubblicato
Dimensione
611 kB
Formato
Adobe PDF
|
611 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.