This paper presents a method of shape chartification suitable for surface approximation. The innovation of this approach lies on the definition of an iterative refinement of the shape into a set of patches that are automatically tiled and used to approximate the original shape up to a prescribed error. The coding of the patches is supported by the Reeb graph and contains the rules to properly tile, stitch them, and reconstruct the original shape while preserving its topology, using a technique which is also exploited for reconstructing an object from non-planar contours. The method is geometry-aware by definition, as the nodes of the Reeb graph are representative of the main shape features, which belong to the approximated shape already at the initial iteration steps. The points of the reconstructed shape belong to the original surface, their total number is highly reduced, and the original connectivity is replaced by a set of patches that preserves the global topology of the input shape

Shape Approximation by Differential Properties of Scalar Functions

S Biasotti;M Spagnuolo;B Falcidieno;
2010

Abstract

This paper presents a method of shape chartification suitable for surface approximation. The innovation of this approach lies on the definition of an iterative refinement of the shape into a set of patches that are automatically tiled and used to approximate the original shape up to a prescribed error. The coding of the patches is supported by the Reeb graph and contains the rules to properly tile, stitch them, and reconstruct the original shape while preserving its topology, using a technique which is also exploited for reconstructing an object from non-planar contours. The method is geometry-aware by definition, as the nodes of the Reeb graph are representative of the main shape features, which belong to the approximated shape already at the initial iteration steps. The points of the reconstructed shape belong to the original surface, their total number is highly reduced, and the original connectivity is replaced by a set of patches that preserves the global topology of the input shape
2010
Istituto di Matematica Applicata e Tecnologie Informatiche - IMATI -
Shape chartification
Morse theory
Shape approximation
Shape reconstruction
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/40791
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 5
social impact