Time-resolved transient grating (TG) spectroscopy facilitates detailed studies of electron dynamics and transport phenomena by means of a periodic excitation of matter with coherent ultrashort light pulses. Several current and next generation free-electron laser (FEL) facilities provide fully coherent pulses with few femtosecond pulse durations and extreme ultraviolet (XUV) photon energies. Thus, they allow for transient grating experiments with periodicities as small as tens of nanometers and with element specific photon energies. Here, we demonstrate the element specificity of XUV TG (X-TG) experiments by tuning the photon energy across the Si L2,3-edge of Si3N4. We observe a shortening of the signal decay when increasing the XUV photon energy above the absorption edge. The analysis of the wavelength dependent signal shows that the faster decay is driven by the increase in the charge carrier density. From the decay constants the interband Auger coefficient at elevated temperatures and high electron densities has been determined.
Nonlinear XUV-optical transient grating spectroscopy at the Si L2,3-edge
Cucini R;Mahne N;
2019
Abstract
Time-resolved transient grating (TG) spectroscopy facilitates detailed studies of electron dynamics and transport phenomena by means of a periodic excitation of matter with coherent ultrashort light pulses. Several current and next generation free-electron laser (FEL) facilities provide fully coherent pulses with few femtosecond pulse durations and extreme ultraviolet (XUV) photon energies. Thus, they allow for transient grating experiments with periodicities as small as tens of nanometers and with element specific photon energies. Here, we demonstrate the element specificity of XUV TG (X-TG) experiments by tuning the photon energy across the Si L2,3-edge of Si3N4. We observe a shortening of the signal decay when increasing the XUV photon energy above the absorption edge. The analysis of the wavelength dependent signal shows that the faster decay is driven by the increase in the charge carrier density. From the decay constants the interband Auger coefficient at elevated temperatures and high electron densities has been determined.File | Dimensione | Formato | |
---|---|---|---|
181101_1_online.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Altro tipo di licenza
Dimensione
1.93 MB
Formato
Adobe PDF
|
1.93 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.