Poplars are ecologically and economically important tree genus, sensitive to ozone (O3). This study aimed to investigate modifying effects of elevated O3 on poplar root response to nutrient addition. Methods In pot experiment, young trees of an O3-sensitive Oxford poplar clone (Populus maximoviczii Henry × berolinensis Dippel) growing in soil with three levels of P (0, 40 and 80 kg ha-1) and two levels of N (0 and 80 kg ha-1) were exposed to three levels of O3 (ambient - AA, 1.5 x AA, 2.0 x AA) at a free air exposure facility. After one growing season, root biomass, fine root (<2 mm) nutrient concentrations and ratios, and fine root morphology were assessed. Nitrogen addition resulted in an up to +100.5% increase in coarse and fine root biomass under AA, and only up to +46.3% increase under 2.0 x AA. Elevated O3 and P addition had a positive effect, while N had a negative effect on P concentrations in fine roots. Nitrogen limitation for root growth expressed as a N:P ratio was more pronounced at elevated O3. Nitrogen addition increased root surface area per soil volume by +78.3% at AA and only by +9.9% at 2.0 x AA. Smaller root surface area per soil volume at elevated O3 prevented acquisition of available N, rendering N fertilization of young poplar plantations in such conditions economically and environmentally questionable.

Elevated ozone prevents acquisition of available N due to smaller root surface area in poplar

Hoshika Y.;Carrari E.;Paoletti E.;
2020

Abstract

Poplars are ecologically and economically important tree genus, sensitive to ozone (O3). This study aimed to investigate modifying effects of elevated O3 on poplar root response to nutrient addition. Methods In pot experiment, young trees of an O3-sensitive Oxford poplar clone (Populus maximoviczii Henry × berolinensis Dippel) growing in soil with three levels of P (0, 40 and 80 kg ha-1) and two levels of N (0 and 80 kg ha-1) were exposed to three levels of O3 (ambient - AA, 1.5 x AA, 2.0 x AA) at a free air exposure facility. After one growing season, root biomass, fine root (<2 mm) nutrient concentrations and ratios, and fine root morphology were assessed. Nitrogen addition resulted in an up to +100.5% increase in coarse and fine root biomass under AA, and only up to +46.3% increase under 2.0 x AA. Elevated O3 and P addition had a positive effect, while N had a negative effect on P concentrations in fine roots. Nitrogen limitation for root growth expressed as a N:P ratio was more pronounced at elevated O3. Nitrogen addition increased root surface area per soil volume by +78.3% at AA and only by +9.9% at 2.0 x AA. Smaller root surface area per soil volume at elevated O3 prevented acquisition of available N, rendering N fertilization of young poplar plantations in such conditions economically and environmentally questionable.
2020
Istituto di Ricerca sugli Ecosistemi Terrestri - IRET
Fine roots
Nitrogen
Phosphorus
O3-FACE
Populus maximoviczii × berolinensis
File in questo prodotto:
File Dimensione Formato  
prod_421039-doc_149364.pdf

solo utenti autorizzati

Descrizione: Elevated ozone prevents acquisition of available N due to smaller root surface area in poplar
Tipologia: Documento in Post-print
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 530.3 kB
Formato Adobe PDF
530.3 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/408039
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact