In this work, we demonstrate the feasibility to obtain aluminium nitride (AlN) nanostructures by radio frequency magnetron sputtering technique. In particular, nanostructured flower-like morphologies are achieved through a direct growth of AlN films on superhard rhodium boride (RhB) layers deposited by means of pulsed laser deposition (PLD) technique. AlN is deposited at different substrate temperatures in the range 300-500 °C in order to investigate the effects on morphology and crystalline structure. The samples are characterized by field emission scanning electron microscopy, atomic force microscopy, X-ray diffraction analysis and photoluminescence measurements. Results reveal nanostructured flower-like morphology of AlN for samples grown at different temperatures, while the smoothing of flower-petals with the increasing of temperature is observed. X-ray diffraction analysis indicate that the (002) crystallographic texture of the samples decreased upon the increase of the deposition temperature and only for the sample deposited at 300 °C a strong c-axis orientation is obtained.

Flower-like Aluminium Nitride nano-structures deposited by rf magnetron sputtering on Superhard Rhodium Boride films

Fabio Di Pietrantonio;Marco Fosca;Massimiliano Benetti;
2019

Abstract

In this work, we demonstrate the feasibility to obtain aluminium nitride (AlN) nanostructures by radio frequency magnetron sputtering technique. In particular, nanostructured flower-like morphologies are achieved through a direct growth of AlN films on superhard rhodium boride (RhB) layers deposited by means of pulsed laser deposition (PLD) technique. AlN is deposited at different substrate temperatures in the range 300-500 °C in order to investigate the effects on morphology and crystalline structure. The samples are characterized by field emission scanning electron microscopy, atomic force microscopy, X-ray diffraction analysis and photoluminescence measurements. Results reveal nanostructured flower-like morphology of AlN for samples grown at different temperatures, while the smoothing of flower-petals with the increasing of temperature is observed. X-ray diffraction analysis indicate that the (002) crystallographic texture of the samples decreased upon the increase of the deposition temperature and only for the sample deposited at 300 °C a strong c-axis orientation is obtained.
2019
Istituto per la Microelettronica e Microsistemi - IMM
Istituto di Struttura della Materia - ISM - Sede Roma Tor Vergata
aluminium nitride
nanostructures
RF magnetron Sputtering Deposition
superhard
rhodium boride
coating
films
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/408056
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact