DDE (2,2-bis (p-chlorophenyl)-1,1-dichloroetylene) is a very persistent and bioaccumulative pesticide and its residues are continuously found in the environment. Among the green remediation strategies for soil recovery, terrestrial Microbial Fuel Cells (MFC) are arousing great interest in scientific community. MFCs transform energy stored in the chemical bonds of organic compounds into electrical energy thanks to exo-electrogen microorganisms naturally occurring in soil, which catalyse oxidation and reduction reactions in the area between two graphite electrodes. This work reports preliminary data on the use of MFCs for promoting soil decontamination from DDE. Several experimental conditions (e.g. addition of compost and open/closed circuit) were applied for assessing how to improve MFC performance in favouring DDE removal. MFCs promoted a significant DDE removal (39%) after 2 months, while at the same time any pesticide decrease was observed in the batch condition. Compost addition stimulated microbial activity and improved MFC performance for a longer time.

Use of microbial fuel cells for soil remediation: A preliminary study on DDE

Aimola G;Ancona V;Grenni P;Bagnuolo G;Garbini GL;Rolando L;Barra Caracciolo A
2021

Abstract

DDE (2,2-bis (p-chlorophenyl)-1,1-dichloroetylene) is a very persistent and bioaccumulative pesticide and its residues are continuously found in the environment. Among the green remediation strategies for soil recovery, terrestrial Microbial Fuel Cells (MFC) are arousing great interest in scientific community. MFCs transform energy stored in the chemical bonds of organic compounds into electrical energy thanks to exo-electrogen microorganisms naturally occurring in soil, which catalyse oxidation and reduction reactions in the area between two graphite electrodes. This work reports preliminary data on the use of MFCs for promoting soil decontamination from DDE. Several experimental conditions (e.g. addition of compost and open/closed circuit) were applied for assessing how to improve MFC performance in favouring DDE removal. MFCs promoted a significant DDE removal (39%) after 2 months, while at the same time any pesticide decrease was observed in the batch condition. Compost addition stimulated microbial activity and improved MFC performance for a longer time.
2021
Istituto di Ricerca Sulle Acque - IRSA
MFC
DDE
Bioremediation
Exo-electrogen microrganismi
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/408184
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 23
  • ???jsp.display-item.citation.isi??? ND
social impact