Nowadays, additive manufacturing (AM) permits to realize complex metallic structural parts, and the use of NiTi alloy, known as Nitinol, allows the integration of specific functions to the AM products. One of the most promising designs for AM is concerning the use of lattice structures that show lightweight, higher than bulk material deformability, improved damping properties, high exchange surface. Moreover, lattice structures can be realized with struts, having dimensions below 1 mm-this is very attractive for the realization of Nitinol components for biomedical devices. In this light, the present work regarded the experimental characterization of lattice structures, produced by selective laser melting (SLM), by using Ni-rich NiTi alloy. Differential scanning calorimetry (DSC), electron backscatter diffraction (EBSD), and compression testing were carried out for analyzing microstructure, martensitic transformation (MT) evolution, and superelasticity response of the SLMed lattice samples. The lattice microstructures were compared with those of the SLMed bulk material for highlighting differences. Localized martensite was detected in the nodes zones, where the rapid solidification tends to accumulate solidification stresses. An increase of martensitic transformation temperatures was also observed in lattice NiTi.

Microstructural and Mechanical Response of NiTi Lattice 3D Structure Produced by Selective Laser Melting

Biffi CA;Bassani P;Fiocchi J;Tuissi A
2020

Abstract

Nowadays, additive manufacturing (AM) permits to realize complex metallic structural parts, and the use of NiTi alloy, known as Nitinol, allows the integration of specific functions to the AM products. One of the most promising designs for AM is concerning the use of lattice structures that show lightweight, higher than bulk material deformability, improved damping properties, high exchange surface. Moreover, lattice structures can be realized with struts, having dimensions below 1 mm-this is very attractive for the realization of Nitinol components for biomedical devices. In this light, the present work regarded the experimental characterization of lattice structures, produced by selective laser melting (SLM), by using Ni-rich NiTi alloy. Differential scanning calorimetry (DSC), electron backscatter diffraction (EBSD), and compression testing were carried out for analyzing microstructure, martensitic transformation (MT) evolution, and superelasticity response of the SLMed lattice samples. The lattice microstructures were compared with those of the SLMed bulk material for highlighting differences. Localized martensite was detected in the nodes zones, where the rapid solidification tends to accumulate solidification stresses. An increase of martensitic transformation temperatures was also observed in lattice NiTi.
2020
Istituto di Chimica della Materia Condensata e di Tecnologie per l'Energia - ICMATE
shape memory alloys
NiTi
selective laser melting
additive manufacturing
lattice structure
EBSD
superelasticity
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/408463
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 30
  • ???jsp.display-item.citation.isi??? ND
social impact