Methylation/demethylation of cytosine plays an important role in epigenetic signaling, the reversibility of epigenetic modifications offering important opportunities for targeted therapies. Actually, methylated sites have been correlated with mutational hotspots detected in skin cancers. The present brief review discusses the physicochemical parameters underlying the specific ultraviolet-induced reactivity of methylated cytosine. It focuses on dimerization reactions giving rise to cyclobutane pyrimidine dimers and pyrimidine (6-4) pyrimidone adducts. According to recent studies, four conformational and electronic factors that are affected by cytosine methylation may control these reactions: the red-shift of the absorption spectrum, the lengthening of the excited state lifetime, changes in the sugar puckering modifying the stacking between reactive pyrimidines and an increase in the rigidity of duplexes favoring excitation energy transfer toward methylated pyrimidines.

UV-induced damage to DNA: Effect of cytosine methylation on pyrimidine dimerization

Esposito Luciana;Improta Roberto
2017

Abstract

Methylation/demethylation of cytosine plays an important role in epigenetic signaling, the reversibility of epigenetic modifications offering important opportunities for targeted therapies. Actually, methylated sites have been correlated with mutational hotspots detected in skin cancers. The present brief review discusses the physicochemical parameters underlying the specific ultraviolet-induced reactivity of methylated cytosine. It focuses on dimerization reactions giving rise to cyclobutane pyrimidine dimers and pyrimidine (6-4) pyrimidone adducts. According to recent studies, four conformational and electronic factors that are affected by cytosine methylation may control these reactions: the red-shift of the absorption spectrum, the lengthening of the excited state lifetime, changes in the sugar puckering modifying the stacking between reactive pyrimidines and an increase in the rigidity of duplexes favoring excitation energy transfer toward methylated pyrimidines.
2017
cytosine methylation
pyrimidine dimerization
uv-induced reactions
skin cancers
electronic and conformational factors
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/408530
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 42
  • ???jsp.display-item.citation.isi??? ND
social impact