The recently introduced complex active optical network (LANER) generalizes the concept of laser system to a collection of links, building a bridge with random-laser physics and quantum-graphs theory. So far, LANERs have been studied with a linear approach. Here, we develop a nonlinear formalism in the perspective of describing realistic experimental devices. The propagation along active links is treated via suitable rate equations, which require the inclusion of an auxiliary variable: the population inversion. Altogether, the resulting mathematical model can be viewed as an abstract network, its nodes corresponding to the fields along the physical links. The dynamical equations differ from standard network models in that, they are a mixture of differential delay (for the active links) and algebraic equations (for the passive links). The stationary states of a generic setup with a single active medium are thoroughly discussed, showing that the role of the passive components can be combined into a single transfer function that takes into account the corresponding resonances.

Modeling active optical networks

Giacomelli G.;Politi A.;
2020

Abstract

The recently introduced complex active optical network (LANER) generalizes the concept of laser system to a collection of links, building a bridge with random-laser physics and quantum-graphs theory. So far, LANERs have been studied with a linear approach. Here, we develop a nonlinear formalism in the perspective of describing realistic experimental devices. The propagation along active links is treated via suitable rate equations, which require the inclusion of an auxiliary variable: the population inversion. Altogether, the resulting mathematical model can be viewed as an abstract network, its nodes corresponding to the fields along the physical links. The dynamical equations differ from standard network models in that, they are a mixture of differential delay (for the active links) and algebraic equations (for the passive links). The stationary states of a generic setup with a single active medium are thoroughly discussed, showing that the role of the passive components can be combined into a single transfer function that takes into account the corresponding resonances.
2020
Istituto dei Sistemi Complessi - ISC
networks
lasers
delay
File in questo prodotto:
File Dimensione Formato  
prod_425275-doc_162042.pdf

solo utenti autorizzati

Descrizione: Modeling active optical networks
Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 720.67 kB
Formato Adobe PDF
720.67 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/408640
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? ND
social impact