We present a study of the digitized quantum annealing protocol proposed by R. Barends et al. [Nature (London) 534, 222 (2016)NATUAS0028-083610.1038/nature17658]. Our analysis, performed on the benchmark case of a transverse Ising chain problem, shows that the algorithm has a well-defined optimal working point for the annealing time ?Popt, scaling as ?Popt~P, where P is the number of digital Trotter steps, beyond which the residual energy error shoots up toward the value characteristic of the maximally disordered state. We present an analytical analysis for the translationally invariant transverse Ising chain case, but our numerical evidence suggests that this scenario is more general, surviving, for instance, the presence of disorder.
Optimal working point in digitized quantum annealing
Santoro GE
2019
Abstract
We present a study of the digitized quantum annealing protocol proposed by R. Barends et al. [Nature (London) 534, 222 (2016)NATUAS0028-083610.1038/nature17658]. Our analysis, performed on the benchmark case of a transverse Ising chain problem, shows that the algorithm has a well-defined optimal working point for the annealing time ?Popt, scaling as ?Popt~P, where P is the number of digital Trotter steps, beyond which the residual energy error shoots up toward the value characteristic of the maximally disordered state. We present an analytical analysis for the translationally invariant transverse Ising chain case, but our numerical evidence suggests that this scenario is more general, surviving, for instance, the presence of disorder.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.