Let t be a disjoint sum of tensors associated to a matrix product. The rank of the s-th tensorial power of t can be bounded by an expression involving the elemnts of t exponent for matrix multiplicatio. This relation leads to a trascendental equation defining a new exponent for matrix multiplication. The use of this approach allowed reducing to 2.5166 the exponent 2.5218 due to V.Pan, S.Winograd [7,8] and A.Schonhage [9].

Some properties of disjoint sums of tensors related to matrix multiplication

1980

Abstract

Let t be a disjoint sum of tensors associated to a matrix product. The rank of the s-th tensorial power of t can be bounded by an expression involving the elemnts of t exponent for matrix multiplicatio. This relation leads to a trascendental equation defining a new exponent for matrix multiplication. The use of this approach allowed reducing to 2.5166 the exponent 2.5218 due to V.Pan, S.Winograd [7,8] and A.Schonhage [9].
1980
Istituto di Scienza e Tecnologie dell'Informazione "Alessandro Faedo" - ISTI
computational complexity
matrix multiplicator
tensor rank
exponent
File in questo prodotto:
File Dimensione Formato  
prod_421763-doc_149822.pdf

accesso aperto

Descrizione: Some properties of disjoint sums of tensors related to matrix multiplication
Dimensione 1.31 MB
Formato Adobe PDF
1.31 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/408719
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact