A set of bilinear forms can be evaluated with a multiplicative complexity lower than the rank of the associated tensor by allowing an arbitrarily small errar. A topological interpretation of this fact is presented together with the error analysis. A complexity measure is introduced which takes into account the numerical stability of algorithms. Relations are established between the complexities of exact and approximare algorithms.

Approximate solutions for the bilinear form computational problem

1980

Abstract

A set of bilinear forms can be evaluated with a multiplicative complexity lower than the rank of the associated tensor by allowing an arbitrarily small errar. A topological interpretation of this fact is presented together with the error analysis. A complexity measure is introduced which takes into account the numerical stability of algorithms. Relations are established between the complexities of exact and approximare algorithms.
1980
Istituto di Scienza e Tecnologie dell'Informazione "Alessandro Faedo" - ISTI
analysis of algorithms
approximate computations
computational complexity
numerical mathematics
File in questo prodotto:
File Dimensione Formato  
prod_421803-doc_149851.pdf

solo utenti autorizzati

Descrizione: Approximate solutions for the bilinear form computational problem
Tipologia: Versione Editoriale (PDF)
Dimensione 685.32 kB
Formato Adobe PDF
685.32 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/408759
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 51
social impact