In recent years, the distribution of local and renewable generation plants has introduced significant challenges in the management of electrical energy. In order to increase the usage of renewable energy, the prosumers, i.e., the residential users that can act both as producers and consumers, can benefit from joining together and forming energy communities. The deployment of an energy community is based both on technological advancements and on a deep understanding of human decision-making, which in turn requires knowledge about the factors that influence the behavior of residential users. This new scenario calls for great research investigations aimed to improve the management of energy exchanges inside energy communities. An important role in this context is played by the Internet of Things (IoT) technology, as smart IoT objects are used both as a source of real-time information regarding the energy production and the users' requirements, and as actuators that can help to regulate the distribution and use of energy. In this paper, an IoT-aware optimization model for the energy management in energy communities is presented. The main novelty consists in modeling the entire energy community as a whole, rather than each prosumer separately, with the goal of optimizing the energy sharing and balance at the community level. Experimental results, performed in an university campus, show the advantages of the approach and its capability of reducing the energy costs and increasing the community's energy autonomy.
Optimization Model for IoT-Aware Energy Exchange in Energy Communities for Residential Users
Giordano A;Mastroianni C;Scarcello L
2020
Abstract
In recent years, the distribution of local and renewable generation plants has introduced significant challenges in the management of electrical energy. In order to increase the usage of renewable energy, the prosumers, i.e., the residential users that can act both as producers and consumers, can benefit from joining together and forming energy communities. The deployment of an energy community is based both on technological advancements and on a deep understanding of human decision-making, which in turn requires knowledge about the factors that influence the behavior of residential users. This new scenario calls for great research investigations aimed to improve the management of energy exchanges inside energy communities. An important role in this context is played by the Internet of Things (IoT) technology, as smart IoT objects are used both as a source of real-time information regarding the energy production and the users' requirements, and as actuators that can help to regulate the distribution and use of energy. In this paper, an IoT-aware optimization model for the energy management in energy communities is presented. The main novelty consists in modeling the entire energy community as a whole, rather than each prosumer separately, with the goal of optimizing the energy sharing and balance at the community level. Experimental results, performed in an university campus, show the advantages of the approach and its capability of reducing the energy costs and increasing the community's energy autonomy.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.