We study the power spectrum of a space-time dependent neural field which describes the average membrane potential of neurons in a single layer. This neural field is modelled by a dissipative integro-differential equation, the so-called Amari equation. By considering a small perturbation with respect to a stationary and uniform configuration of the neural field we derive a linearized equation which is solved for a generic external stimulus by using the Fourier transform into wavevector-freqency domain, finding an analytical formula for the power spectrum of the neural field. In addition, after proving that for large wavelengths the linearized Amari equation is equivalent to a diffusion equation which admits space-time dependent analytical solutions, we take into account the nonlinearity of the Amari equation. We find that for large wavelengths a weak nonlinearity in the Amari equation gives rise to a reaction-diffusion equation which can be formally derived from a neural action functional by introducing a dual neural field. For some initial conditions, we discuss analytical solutions of this reaction-diffusion equation.

Power Spectrum and Diffusion of the Amari Neural Field

Salasnich;Luca
2019

Abstract

We study the power spectrum of a space-time dependent neural field which describes the average membrane potential of neurons in a single layer. This neural field is modelled by a dissipative integro-differential equation, the so-called Amari equation. By considering a small perturbation with respect to a stationary and uniform configuration of the neural field we derive a linearized equation which is solved for a generic external stimulus by using the Fourier transform into wavevector-freqency domain, finding an analytical formula for the power spectrum of the neural field. In addition, after proving that for large wavelengths the linearized Amari equation is equivalent to a diffusion equation which admits space-time dependent analytical solutions, we take into account the nonlinearity of the Amari equation. We find that for large wavelengths a weak nonlinearity in the Amari equation gives rise to a reaction-diffusion equation which can be formally derived from a neural action functional by introducing a dual neural field. For some initial conditions, we discuss analytical solutions of this reaction-diffusion equation.
2019
Istituto Nazionale di Ottica - INO
Neural field theory
Amari equation
power spectrum
reaction-diffusion
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/408912
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact