The design of genetic or protein networks that satisfy a given set of behavioural specifications is one of the main challenges of synthetic biology. Model-based design is a natural choice in this respect. Here we consider the problem of tuning parameters of a stochastic model to force one or more behavioural goals to hold. In particular, we consider several objectives specified by signal temporal logic formulae, and we look for a parameter set making their satisfaction probability as large as possible. This formalisation results in a multi-objective optimisation problem, which we solve by considering an optimisation scheme combining satisfaction probability and average robustness of STL properties, leveraging state of the art multi-objective optimisation routines.
Logic-based multi-objective design of chemical reaction networks
Bortolussi L;
2016
Abstract
The design of genetic or protein networks that satisfy a given set of behavioural specifications is one of the main challenges of synthetic biology. Model-based design is a natural choice in this respect. Here we consider the problem of tuning parameters of a stochastic model to force one or more behavioural goals to hold. In particular, we consider several objectives specified by signal temporal logic formulae, and we look for a parameter set making their satisfaction probability as large as possible. This formalisation results in a multi-objective optimisation problem, which we solve by considering an optimisation scheme combining satisfaction probability and average robustness of STL properties, leveraging state of the art multi-objective optimisation routines.File | Dimensione | Formato | |
---|---|---|---|
prod_424176-doc_151189.pdf
non disponibili
Descrizione: Logic-based multi-objective design of chemical reaction networks
Tipologia:
Versione Editoriale (PDF)
Dimensione
1.4 MB
Formato
Adobe PDF
|
1.4 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.