We investigate the quasistatic evolution of a one-dimensional elastoplastic body at small strains. The model includes general nonlinear kinematic hardening but no nonlocal compactifying term. Correspondingly, the free energy of the medium is local but nonquadratic. We prove that the quasistatic evolution problem admits a unique strong solution.
Well-posedness of a one-dimensional nonlinear kinematic hardening model
U Stefanelli
2020
Abstract
We investigate the quasistatic evolution of a one-dimensional elastoplastic body at small strains. The model includes general nonlinear kinematic hardening but no nonlocal compactifying term. Correspondingly, the free energy of the medium is local but nonquadratic. We prove that the quasistatic evolution problem admits a unique strong solution.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
prod_427697-doc_152434.pdf
non disponibili
Descrizione: Well-posedness of a one-dimensional nonlinear kinematic hardening model
Tipologia:
Versione Editoriale (PDF)
Dimensione
324.22 kB
Formato
Adobe PDF
|
324.22 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.