This Special Issue contains twelve publications that, through different remote sensing techniques, investigate how the atmospheric aerosol layers and their radiative effects influence cloud formation, precipitation and air-quality. The investigations are carried out analyzing observations obtained from high-resolution optical devices deployed on different platforms as satellite and ground-based observational sites. In this editorial, the published contributions are taken in review to highlight their innovative contribution and research main findings.

Editorial for Special Issue "High Resolution Active Optical Remote Sensing Observations of Aerosols, Clouds and Aerosol-Cloud Interactions and Their Implication to Climate"

Lolli Simone;
2020

Abstract

This Special Issue contains twelve publications that, through different remote sensing techniques, investigate how the atmospheric aerosol layers and their radiative effects influence cloud formation, precipitation and air-quality. The investigations are carried out analyzing observations obtained from high-resolution optical devices deployed on different platforms as satellite and ground-based observational sites. In this editorial, the published contributions are taken in review to highlight their innovative contribution and research main findings.
2020
Istituto di Metodologie per l'Analisi Ambientale - IMAA
lidar
aerosols
remote sensing
precipitation
wind lidar
air-pollution
radiative effects
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/409401
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact