Nowadays, novel less-expensive nanoformulations for in situ-controlled and safe delivery of photosensitisers (PSs) against opportunistic pathogens in body-infections areas need to be developed. Antimicrobial photodynamic therapy (aPDT) is a promising approach to treat bacterial infections that are recalcitrant to antibiotics. In this paper, we propose the design and characterization of a novel nanophototherapeutic based on the trade cyclodextrin CAPTISOL® (sulfobutylether-beta-cyclodextrin, SBE-?CD) and 5,10,15,20-tetrakis(1-methylpyridinium-4-yl)porphine tetrakis(p-toluenesulfonate) (TMPyP) to fabricate efficient biocompatible systems for aPDT. Spherical nanoassemblies of about 360 nm based on CAPTISOL®/TMPyP supramolecular complexes with 1:1 stoichiometry and apparent equilibrium binding constant (K ? 1.32 × 10 M) were prepared with entrapment efficiency of ? 100% by simple mixing in aqueous media and freeze-drying. These systems have been characterized by complementary spectroscopy and microscopy techniques. Time resolved fluorescence pointed out the strong interaction of porphyrin monomer within nanoassemblies (? ? 11 ns with an amount of ca 90%) and scarce self-aggregation of porphyrins have been observed. Singlet oxygen comparative determination (?® = 0.58) assessed their photodynamic potential. Release and photostability studies have been carried out under physiological conditions pointing out the role of CAPTISOL® to sustain porphyrin release for more than 2 weeks and to protect PS from photodegradation. Finally, photoantimicrobial activity of nanoassemblies vs free porphyrin have been investigated against Gram-negative P. aeruginosa, E. coli and Gram-positive S. aureus. The proposed nanosystems were able to photokill both Gram-positive and -negative bacterial cells similarly to TMPyP at MBC = 6 µM of TMPyP and at 42 J/cm light dose. However, with respect to the less selective free TMPyP in biological sites, nanoassemblies exhibit sustained release properties and a higher photostability thus optimizing the PDT effect at the site of action. These results can open routes for in vivo translational studies on nano(photo)drugs and nanotheranostics based on less expensive formulations of CD and PS.

Sulfobutylether?cyclodextrin5,10,15,20tetrakis(1-methylpyridinium-4-yl)porphine nanoassemblies with sustained antimicrobial phototherapeutic action

Zagami R;Mazzaglia A
2020

Abstract

Nowadays, novel less-expensive nanoformulations for in situ-controlled and safe delivery of photosensitisers (PSs) against opportunistic pathogens in body-infections areas need to be developed. Antimicrobial photodynamic therapy (aPDT) is a promising approach to treat bacterial infections that are recalcitrant to antibiotics. In this paper, we propose the design and characterization of a novel nanophototherapeutic based on the trade cyclodextrin CAPTISOL® (sulfobutylether-beta-cyclodextrin, SBE-?CD) and 5,10,15,20-tetrakis(1-methylpyridinium-4-yl)porphine tetrakis(p-toluenesulfonate) (TMPyP) to fabricate efficient biocompatible systems for aPDT. Spherical nanoassemblies of about 360 nm based on CAPTISOL®/TMPyP supramolecular complexes with 1:1 stoichiometry and apparent equilibrium binding constant (K ? 1.32 × 10 M) were prepared with entrapment efficiency of ? 100% by simple mixing in aqueous media and freeze-drying. These systems have been characterized by complementary spectroscopy and microscopy techniques. Time resolved fluorescence pointed out the strong interaction of porphyrin monomer within nanoassemblies (? ? 11 ns with an amount of ca 90%) and scarce self-aggregation of porphyrins have been observed. Singlet oxygen comparative determination (?® = 0.58) assessed their photodynamic potential. Release and photostability studies have been carried out under physiological conditions pointing out the role of CAPTISOL® to sustain porphyrin release for more than 2 weeks and to protect PS from photodegradation. Finally, photoantimicrobial activity of nanoassemblies vs free porphyrin have been investigated against Gram-negative P. aeruginosa, E. coli and Gram-positive S. aureus. The proposed nanosystems were able to photokill both Gram-positive and -negative bacterial cells similarly to TMPyP at MBC = 6 µM of TMPyP and at 42 J/cm light dose. However, with respect to the less selective free TMPyP in biological sites, nanoassemblies exhibit sustained release properties and a higher photostability thus optimizing the PDT effect at the site of action. These results can open routes for in vivo translational studies on nano(photo)drugs and nanotheranostics based on less expensive formulations of CD and PS.
2020
Istituto per lo Studio dei Materiali Nanostrutturati - ISMN
Cyclodextrin
porphyrin
antimicrobial photodynamic therapy
sustained release
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/409444
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? ND
social impact