Anisotropic porous Pb(Zr,Ti)O3 ceramics with various porosity degrees have been studied in order to determine the role of the pore shape and orientation on the low-field dielectric properties. Ceramic samples with formula Pb(Zr0.52Ti0.48)0.976Nb0.024O3 with different porosity degrees (dense, 10%, 20%, 40% vol.) have been prepared by solid state reaction. Taking into consideration the shape and orientation of the pore inclusions, the dielectric properties of porous ceramics have been described by using adapted mixing rules models. Rigorous bounds, derived on the basis on Variational Principle, were used to frame dielectric properties of porous composites. The finite element method (FEM) was additionally used to simulate the dielectric response of the porous composites under various applied fields. Among the few effective medium approximation models adapted for anisotropic oriented inclusions, the best results were obtained in case of needle-like shape inclusions (which do not correspond to the real shape of microstructure inclusions). The general case of Wiener bounds limited well the dielectric properties of anisotropic porous composites in case of parallel orientation. Among the theoretical approaches, FEM technique allowed to simulate the distribution of potential and electric field inside composites and provided a very good agreement between the computed permittivity values and experimental ones.

Investigation of low field dielectric properties of anisotropic porous Pb(Zr,Ti)O-3 ceramics: Experiment and modeling (vol 114, 214101, 2013)

Baldisserri C;Galassi C;
2014

Abstract

Anisotropic porous Pb(Zr,Ti)O3 ceramics with various porosity degrees have been studied in order to determine the role of the pore shape and orientation on the low-field dielectric properties. Ceramic samples with formula Pb(Zr0.52Ti0.48)0.976Nb0.024O3 with different porosity degrees (dense, 10%, 20%, 40% vol.) have been prepared by solid state reaction. Taking into consideration the shape and orientation of the pore inclusions, the dielectric properties of porous ceramics have been described by using adapted mixing rules models. Rigorous bounds, derived on the basis on Variational Principle, were used to frame dielectric properties of porous composites. The finite element method (FEM) was additionally used to simulate the dielectric response of the porous composites under various applied fields. Among the few effective medium approximation models adapted for anisotropic oriented inclusions, the best results were obtained in case of needle-like shape inclusions (which do not correspond to the real shape of microstructure inclusions). The general case of Wiener bounds limited well the dielectric properties of anisotropic porous composites in case of parallel orientation. Among the theoretical approaches, FEM technique allowed to simulate the distribution of potential and electric field inside composites and provided a very good agreement between the computed permittivity values and experimental ones.
2014
Istituto di Scienza, Tecnologia e Sostenibilità per lo Sviluppo dei Materiali Ceramici - ISSMC (ex ISTEC)
PZT
ceramic
porosity
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/409532
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact