We consider the crystallization problem for a finite one-dimensional collection of identical hard spheres in a periodic energy landscape. This issue arises in connection with the investigation of crystalline states of ionic dimers, as well as in epitaxial growth on a crystalline substrate in presence of lattice mismatch. Depending on the commensurability of the radius of the sphere and the period of the landscape, we discuss the possible emergence of crystallized states. In particular, we prove that crystallization in arbitrarily long chains is generically not to be expected.
Crystallization in a one-dimensional periodic landscape
U Stefanelli
2020
Abstract
We consider the crystallization problem for a finite one-dimensional collection of identical hard spheres in a periodic energy landscape. This issue arises in connection with the investigation of crystalline states of ionic dimers, as well as in epitaxial growth on a crystalline substrate in presence of lattice mismatch. Depending on the commensurability of the radius of the sphere and the period of the landscape, we discuss the possible emergence of crystallized states. In particular, we prove that crystallization in arbitrarily long chains is generically not to be expected.File in questo prodotto:
| File | Dimensione | Formato | |
|---|---|---|---|
|
prod_427709-doc_152453.pdf
solo utenti autorizzati
Descrizione: Crystallization in a one-dimensional periodic landscape
Tipologia:
Versione Editoriale (PDF)
Dimensione
318.17 kB
Formato
Adobe PDF
|
318.17 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
|
prod_427709-doc_152454.pdf
accesso aperto
Descrizione: Crystallization in a one-dimensional periodic landscape
Tipologia:
Versione Editoriale (PDF)
Dimensione
332.82 kB
Formato
Adobe PDF
|
332.82 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


