We present a strategy based on two-dimensional arrays of coupled linear optical resonators to investigate the two-body physics of interacting bosons in one-dimensional lattices. In particular, we want to address the bound pairs in topologically nontrivial Su-Schrieffer-Heeger arrays. Taking advantage of the driven-dissipative nature of the resonators, we propose spectroscopic protocols to detect and tomographically characterize bulk doublon bands and doublon edge states from the spatially resolved transmission spectra, and to highlight Feshbach resonance effects in two-body collision processes. We discuss the experimental feasibility using state-of-the-art devices, with a specific eye on arrays of semiconductor micropillar cavities.

Simulation of two-boson bound states using arrays of driven-dissipative coupled linear optical resonators

Recati Alessio;Carusotto Iacopo;Menotti Chiara
2018

Abstract

We present a strategy based on two-dimensional arrays of coupled linear optical resonators to investigate the two-body physics of interacting bosons in one-dimensional lattices. In particular, we want to address the bound pairs in topologically nontrivial Su-Schrieffer-Heeger arrays. Taking advantage of the driven-dissipative nature of the resonators, we propose spectroscopic protocols to detect and tomographically characterize bulk doublon bands and doublon edge states from the spatially resolved transmission spectra, and to highlight Feshbach resonance effects in two-body collision processes. We discuss the experimental feasibility using state-of-the-art devices, with a specific eye on arrays of semiconductor micropillar cavities.
2018
Istituto Nazionale di Ottica - INO
Two-body bound state in driven dissipative systems
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/409733
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 16
social impact